Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Collaborative venture between the National Institute of Mental Health (NIMH) and several academic institutions. Repository facilitates psychiatric genetic research by providing patient and control samples and phenotypic data for wide-range of mental disorders and Stem Cells.Stores biosamples, genetic, pedigree and clinical data collected in designated NIMH-funded human subject studies. RGR database likewise links to other repositories holding data from same subjects, including dbGAP, GEO and NDAR. Allows to access these data and biospecimens (e.g., lymphoblastoid cell lines, induced pluripotent cell lines, fibroblasts) and further expand genetic and molecular characterization of patient populations with severe mental illness.
Proper citation: NIMH Repository and Genomics Resources (RRID:SCR_006698) Copy
https://www.ncbi.nlm.nih.gov/pubmed/17539361
Study of twins and their families provides tool for disentangling genetic and environmental origins of traits. Study collected behavioral and psychopathological information using self-, parent and teacher reports, and focused on contributions of genetic and environmental risk factors to psychological health of young people.
Proper citation: Cardiff Study of all Wales and North West of England Twins (RRID:SCR_017480) Copy
http://med.stanford.edu/tanglab/software/saber.html
Software program suitable for genome-scale data which uses a Markov-hidden Markov model (MHMM) to estimate local ancestry. The MHMM makes it possible to identify genomic blocks of a particular ancestry by use of any high-density single-nucleotide-polymorphism panel. One application is to perform admixture mapping without genotyping special ancestry-informative-marker panels.
Proper citation: SABER (RRID:SCR_001257) Copy
http://www.wpic.pitt.edu/wpiccompgen/GemTools/GemTools.htm
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Software tools for modeling genetic ancestry based on the single nucleotide polymorphism (SNP) information. This package of functions helps the user account for genetic ancestry of a large number of individuals using spectral graph theory and projections to break a large problem into smaller pieces and calculate genetic ancestry information efficiently, i.e., a divide and conquer (dac) strategy. It is completely written in R and runs on any platform that supports R.
Proper citation: GemTools (RRID:SCR_001259) Copy
http://statgenpro.psychiatry.hku.hk/limx/kggseq/
A biological Knowledge-based mining platform for Genomic and Genetic studies using Sequence data. The software platform, constituted of bioinformatics and statistical genetics functions, makes use of valuable biologic resources and knowledge for sequencing-based genetic mapping of variants / genes responsible for human diseases / traits. It facilitates geneticists to fish for the genetic determinants of human diseases / traits in the big sea of DNA sequences. KGGSeq has paid attention to downstream analysis of genetic mapping. The framework was implemented to filter and prioritize genetic variants from whole exome sequencing data.
Proper citation: KGGSeq (RRID:SCR_005311) Copy
The NBIA Disorders Association, formerly known as Hallervorden-Spatz Syndrome Association, (HSSA) was originally founded in 1996 by President, Patricia Wood. The goals of the association are to raise funds to support research pertinent to NBIA; to provide emotional support to those afflicted with NBIA and their families; and to raise public awareness of NBIA. The NBIA Disorders Association is accepting applications for one-year grants for clinical and translational research studies related to the early detection, diagnosis, or treatment of patients with NBIA. Neurodegeneration with Brain Iron Accumulation (NBIA) is a group of rare, genetic, neurological disorders characterized by the accumulation of iron deposits in the brain and progressive degeneration of the nervous system. It typically first appears in childhood. Presenting signs and symptoms may include difficulty walking, loss of balance, and problems related to speech. Those affected suffer a progressive loss of muscle control, sudden involuntary muscle spasms, and uncontrolled tightening of the muscles. Symptoms may also include disorientation, seizures, and deterioration of intellectual ability. Approximately half of the cases diagnosed have been linked to a mutation of a gene known as PANK2. At the present time, symptoms may be treated but there is no cure. The purpose of the NBIA Disorders Association Research Grant Program is to encourage meritorious research studies designed to improve the diagnosis or treatment of NBIA. The research can be conducted in the United States, countries of the European Union, Canada, Australia, New Zealand, Brazil, Argentina, Chile, South Africa, Japan, or Israel, and in other countries where adequate supervision of grant administration is possible. Grants will be awarded to qualified researchers to initiate pilot studies, the results of which are intended to be used to obtain larger multi-year grant funding. Evaluation of proposals will follow NIH guidelines and include careful consideration of experimental or protocol design, objectivity or relevance of parameters measured, and statistical analysis plan. Proposals that address the following areas will be given priority: * Therapeutics Development: ** Development of pantethine and its derivatives ** Development of other rational therapeutics * Animal & Cellular Models: ** Development of a new rodent disease model by targeted insertion of a ''human disease'' mutation into Pank2 ** Development of induced pluripotent stem cell lines. *** Development of animal and cellular models will be considered for multi-year funding with adequate budget justification. Proposals should detail a research plan and a budget for the initial phase of the work, with the option to contract further work out to a commercial enterprise. * Biomarker Discovery and Assay Development: ** Metabolomics ** Coenzyme A / acyl coenzyme A measurement using accessible (peripheral and central) tissue/fluid * New NBIA gene discovery
Proper citation: NBIA Disorders Association (RRID:SCR_005382) Copy
http://cran.r-project.org/web/packages/gap/
GAP is designed as an integrated package for genetic data analysis of both population and family data. Currently, it contains functions for sample size calculations of both population-based and family-based designs, classic twin models, probability of familial disease aggregation, kinship calculation, some statistics in linkage analysis, and association analysis involving one or more genetic markers including haplotype analysis with or without environmental covariates.
Proper citation: Genetic Analysis Package (RRID:SCR_003006) Copy
A custom genome browser which provides detailed answers to questions on the haplotype diversity and phylogenetic origin of the genetic variation underlying any genomic region of most laboratory strains of mice (both classical and wild-derived). Users can select a region of the genome and a set of laboratory strains and/or wild caught mice. The region is selected by specifying the start (e.g. 31200000 or 31200K or 31.2M), and end of the interval and the chromosome (i.e, autosome number and X chromosome). Samples can be selected by name or by entire set. Data sets include information on subspecific origin, heterozygosity regions, and haplotype coloring, among others.
Proper citation: Mouse Phylogeny Viewer (RRID:SCR_014071) Copy
http://escience.invitrogen.com/ipath/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 26, 2016. LINNEA Pathways is a user-friendly comprehensive online resource for gene- or protein-based scientific research. It is based on a total of 248 signaling and metabolic human biological pathway maps created for Invitrogen by GeneGo. The current version of iPath features 225 maps displaying human regulatory and metabolic pathways established in experimental literature produced by MetaCore from GeneGo, Inc. The map objects (proteins, genes, EC functions, and compounds) are connected via metabolic transformations and physical protein interactions, which were assembled by the GeneGo team of experienced annotators, geneticists, and biochemists. The pathways are organized in a vertical fashion following the general signaling path from signaling molecules and membrane receptors, via signal transduction cascades, to transcription factors and their gene targets. Following the natural organization of cellular machinery with highly interconnected pathways and modules, many maps are linked together via hyperlinked box symbols. Such linkage allows the reconstruction of a big picture view of human cell biology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Invitrogen iPath (RRID:SCR_008120) Copy
http://www.ebi.ac.uk/ipd/mhc/bola/
This website is intended to be the definitive source of information on the bovine major histocompatibility complex - its genes, proteins and polymorphism. Its purpose is to collate data on the Bovine Leucocyte Antigens (BoLA) and provide a forum for the analysis and nomenclature of polymorphisms in the genes and proteins of the bovine MHC. The BoLA nomenclature committee is a standing committee of the International Society for Animal Genetics. Its purpose is to collate data on the Bovine Leucocyte Antigens (BoLA) and provide a forum for the analysis and nomenclature of polymorphisms in the genes and proteins of the bovine MHC. The information gathered here is based on the BoLA workshop reports, which are published in Animal Genetics and the European Journal of Immunogenetics. The workshop report data are reproduced with the permission of the publishers Blackwell Science, and other text on the site is used with the permission of CRC Press.
Proper citation: BoLA Nomenclature: International Society for Animal Genetics (RRID:SCR_008142) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on November 22, 2023. A database containing genomic/biological information on anopheline mosquitoes, with an emphasis on Anopheles gambiae, the world''''s most important malaria vector. AnoBase is an integrated, relational database of basic biological and genetic data on anopheline species, with a particular emphasis on Anopheles gambiae. It has been designed as an information source and research support tool for the broad vector biology community. Although AnoBase is not a primary genomic database that develops and provides tools to access the genome of the malaria mosquito, it nevertheless contains several sections that offer data of genomic interest such as in situ hybridization images, an integrated gene tool and direct online access to AnoXcel, the proteomic database of An. gambiae. Moreover, AnoBase also contains information on non-gambiae mosquito species and a novel section on studies related to insecticide resistance.
Proper citation: AnoBase: An Anopheles database (RRID:SCR_008166) Copy
http://chromium.lovd.nl/LOVD2/home.php?select_db=CDKN2A
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The CDKN2A Database presents the germline and somatic variants of the CDKN2A tumor suppressor gene recorded in human disease through June 2003, annotated with evolutionary, structural, and functional information, in a format that allows the user to either download it or manipulate it for their purposes online. The goal is to provide a database that can be used as a resource by researchers and geneticists and that aids in the interpretation of CDKN2A missense variants. Most online mutation databases present flat files that cannot be manipulated, are often incomplete, and have varying degrees of annotation that may or may not help to interpret the data. They hope to use CDKN2A as a prototype for integrating computational and laboratory data to help interpret variants in other cancer-related genes and other single nucleotide polymorphisms (SNPs) found throughout the genome. Another goal of the lab is to interpret the functional and disease significance of missense variants in cancer susceptibility genes. Eventually, these results will be relevant to the interpretation of single nucleotide polymorphisms (SNPs) in general. The CDKN2A locus is a valuable model for assessing relationships among variation, structure, function, and disease because: Variants of this gene are associated with hereditary cancer: Familial Melanoma (and related syndromes); somatic alterations play a role in carcinogenesis; allelic variants occur whose functional consequences are unknown; reliable functional assays exist; and crystal structure is known. All variants in the database are recorded according to the nomenclature guidelines as outlined by the Human Genome Variation Society. This database is currently designed for research purposes only and is not yet recommended as a clinical resource. Many of the mutations reported here have not been tested for disease association and may represent normal, non-disease causing polymorphisms.
Proper citation: CDKN2A Database (RRID:SCR_008179) Copy
http://jbirc.jbic.or.jp/hinv/ppi/
The PPI view displays H-InvDB human protein-protein interaction (PPI) information. It is constructed by assigning interaction data to H-InvDB proteins which were originally predicted from transcriptional products generated by the H-Invitational project. The PPI view is now providing 32,198 human PPIs comprised of 9,268 H-InvDB proteins. H-Invitational Database (H-InvDB) is an integrated database of human genes and transcripts. By extensive analyses of all human transcripts, we provide curated annotations of human genes and transcripts that include gene structures, alternative splicing isoforms, non-coding functional RNAs, protein functions, functional domains, sub-cellular localizations, metabolic pathways, protein 3D structure, genetic polymorphisms (SNPs, indels and microsatellite repeats) , relation with diseases, gene expression profiling, molecular evolutionary features, protein-protein interactions (PPIs) and gene families/groups. Sponsors: This research is financially supported by the Ministry of Economy, Trade and Industry of Japan (METI), the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and the Japan Biological Informatics Consortium (JBIC). Also, this work is partly supported by the Research Grant for the RIKEN Genome Exploration Research Project from MEXT to Y.H. and the Grant for the RIKEN Frontier Research System, Functional RNA research program.
Proper citation: H-Invitational Database: Protein-Protein Interaction Viewer (RRID:SCR_008054) Copy
http://www.cmbi.ru.nl/GeneSeeker/
The GeneSeeker allows you to search across different databases simultaneously, given a known human genetic location and expression/phenotypic pattern. The GeneSeeker returns any found gene names which are located on the specified location and expressed in the specified tissue. To search for more expression location in one search, just enter them in the textbox for the expression location and separate them with logical operators (and, or, not). You can specify as many tissues as you want, the program starts 20 queries simultaneously, and then waits for a query to finish before starting another query, to keep server loads to a minimum. You can also search only for expression, just leave the cytogenetic location fields blank, and do the query. If you only want to look for one cytogenetic location, only fill in the first location field, and the GeneSeeker will search with only this one. Housekeeping genes , found in Swissprot can be excluded, or genes that are to be excluded can be specified. Human chromosome localizations are translated with an oxford-grid to mouse chromosome localizations, and then submitted to the Mgd. Sponsors: GeneSeeker is a service provided by the Centre for Molecular and Biomolecular Informatics (CMBI).
Proper citation: GeneSeeker (RRID:SCR_008347) Copy
http://mips.gsf.de/services/genomes/uwe25/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. This is the official database of the environmental chlamydia genome project. This resource provides access to finished sequence for Parachlamydia-related symbiont UWE25 and to a wide range of manual annotations, automatical analyses and derived datasets. Functional classification and description has been manually annotated according to the Annotation guidelines. Chlamydiae are the major cause of preventable blindness and sexually transmitted disease. Genome analysis of a chlamydia-related symbiont of free-living amoebae revealed that it is twice as large as any of the pathogenic chlamydiae and had few signs of recent lateral gene acquisition. We showed that about 700 million years ago the last common ancestor of pathogenic and symbiotic chlamydiae was already adapted to intracellular survival in early eukaryotes and contained many virulence factors found in modern pathogenic chlamydiae, including a type III secretion system. Ancient chlamydiae appear to be the originators of mechanisms for the exploitation of eukaryotic cells. Environmental chlamydiae have recently been recognized as obligate endosymbionts of free-living amoebae and have been implicated as potential human pathogens. Environmental chlamydiae form a deep branching evolutionary lineage within the medically important order Chlamydiales. Despite their high diversity and ubiquitous distribution in clinical and environmental samples only limited information about genetics and ecology of these microorganisms is available. The Parachlamydia-related Acanthamoeba symbiont UWE25 was therefore selected as representative environmental chlamydia strain for whole genome sequencing. Comparative genome analysis was performed using PEDANT and simap. Sponsors: The environmental chlamydia genome project was funded by the bmb+f (German Federal Ministry of Education and Research) and is part of the Competence Network PathoGenoMiK.
Proper citation: Protochlamydia amoebophila UWE25 (RRID:SCR_008222) Copy
A clade oriented, community curated database containing genomic, genetic, phenotypic and taxonomic information for plant genomes. Genomic information is presented in a comparative format and tied to important plant model species such as Arabidopsis. SGN provides tools such as: BLAST searches, the SolCyc biochemical pathways database, a CAPS experiment designer, an intron detection tool, an advanced Alignment Analyzer, and a browser for phylogenetic trees. The SGN code and database are developed as an open source project, and is based on database schemas developed by the GMOD project and SGN-specific extensions.
Proper citation: SGN (RRID:SCR_004933) Copy
Online repository of information about Australian plants, animals, and fungi. Development started in 2006. The Commonwealth Scientific and Industrial Research Organisation is organisation significantly involved in development of ALA.
Proper citation: Atlas of Living Australia (RRID:SCR_006467) Copy
This database presents the entire DNA sequence of the first diploid genome sequence of a Han Chinese, a representative of Asian population. The genome, named as YH, represents the start of YanHuang Project, which aims to sequence 100 Chinese individuals in 3 years. It was assembled based on 3.3 billion reads (117.7Gbp raw data) generated by Illumina Genome Analyzer. In total of 102.9Gbp nucleotides were mapped onto the NCBI human reference genome (Build 36) by self-developed software SOAP (Short Oligonucleotide Alignment Program), and 3.07 million SNPs were identified. The personal genome data is illustrated in a MapView, which is powered by GBrowse. A new module was developed to browse large-scale short reads alignment. This module enabled users track detailed divergences between consensus and sequencing reads. In total of 53,643 HGMD recorders were used to screen YH SNPs to retrieve phenotype related information, to superficially explain the donor's genome. Blast service to align query sequences against YH genome consensus was also provided.
Proper citation: YanHuang Project (RRID:SCR_006077) Copy
http://mips.gsf.de/genre/proj/ustilago/
The MIPS Ustilago maydis Genome Database aims to present information on the molecular structure and functional network of the entirely sequenced, filamentous fungus Ustilago maydis. The underlying sequence is the initial release of the high quality draft sequence of the Broad Institute. The goal of the MIPS database is to provide a comprehensive genome database in the Genome Research Environment in parallel with other fungal genomes to enable in depth fungal comparative analysis. The specific aims are to: 1. Generate and assemble Whole Genome Shotgun sequence reads yielding 10X coverage of the U. maydis genome 2. Integrate the genomic sequence assembly with physical maps generated by Bayer CropScience 3. Perform automated annotation of the sequence assembly 4. Align the strain 521 assembly with the FB1 assembly provided by Exelixis 5. Release the sequence assembly and results of our annotation and analysis to public Ustilago maydis is a basidiomycete fungal pathogen of maize and teosinte. The genome size is approximately 20 Mb. The fungus induces tumors on host plants and forms masses of diploid teliospores. These spores germinate and form haploid meiotic products that can be propagated in culture as yeast-like cells. Haploid strains of opposite mating type fuse and form a filamentous, dikaryotic cell type that invades plant tissue to reinitiate infection. Ustilago maydis is an important model system for studying pathogen-host interactions and has been studied for more than 100 years by plant pathologists. Molecular genetic research with U. maydis focuses on recombination, the role of mating in pathogenesis, and signaling pathways that influence virulence. Recently, the fungus has emerged as an excellent experimental model for the molecular genetic analysis of phytopathogenesis, particularly in the characterization of infection-specific morphogenesis in response to signals from host plants. Ustilago maydis also serves as an important model for other basidiomycete plant pathogens that are more difficult to work with in the laboratory, such as the rust and bunt fungi. Genomic sequence of U. maydis will also be valuable for comparative analysis of other fungal genomes, especially with respect to understanding the host range of fungal phytopathogens. The analysis of U. maydis would provide a framework for studying the hundreds of other Ustilago species that attack important crops, such as barley, wheat, sorghum, and sugarcane. Comparisons would also be possible with other basidiomycete fungi, such as the important human pathogen C. neoformans. Commercially, U. maydis is an excellent model for the discovery of antifungal drugs. In addition, maize tumors caused by U. maydis are prized in Hispanic cuisine and there is interest in improving commercial production. The complete putative gene set of the Broad Institute''s second release is loaded into the database and in addition all deviating putative genes from a putative gene set produced by MIPS with different gene prediction parameters are also loaded. The complete dataset will then be analysed, gene predictions will be manually corrected due to combined information derived from different gene prediction algorithms and, more important, protein and EST comparisons. Gene prediction will be restricted to ORFs larger than 50 codons; smaller ORFs will be included only if similarities to other proteins or EST matches confirm their existence or if a coding region was postulated by all prediction programs used. The resulting proteins will be annotated. They will be classified according to the MIPS classification catalogue receiving appropriate descriptions. All proteins with a known, characterized homolog will be automatically assigned to functional categories using the MIPS functional catalog. All extracted proteins are in addition automatically analysed and annotated by the PEDANT suite.
Proper citation: MIPS Ustilago maydis Database (RRID:SCR_007563) Copy
A database for maternal gene expression information for ascidia, colloquially known as sea squirts. Information available includes DNA sequences, expression patterns of ESTs, and cDNA data from uncleaved fertilized eggs. The goal is to utilize the database to understand molecular mechanisms of establishment of embryonic body plans of chordates and to understand evolution from invertebrates to vertebrates in the future.
Proper citation: MAboya Gene Expression Patterns and Sequence Tags (RRID:SCR_000763) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.