Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 out of 240 results
Snippet view Table view Download 240 Result(s)
Click the to add this resource to a Collection

http://pdbml.pdb.org/

Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.

Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy   


http://www.mmrrc.org/

National public repository system for mutant mice. Archives and distributes scientifically valuable spontaneous and induced mutant mouse strains and ES cell lines for use by biomedical research community. Includes breeding/distribution facilities and information coordinating center. Mice strains are cryopreserved, unless live colony must be established. Live mice are supplied from production colony, from colony recovered from cryopreservation, or via micro-injection of cell line into host blastocysts. MMRRC member facilities also develop technologies to improve handling of mutant mice, including advances in assisted reproductive techniques, cryobiology, genetic analysis, phenotyping and infectious disease diagnostics.

Proper citation: Mutant Mouse Resource and Research Center (RRID:SCR_002953) Copy   


  • RRID:SCR_002850

    This resource has 50+ mentions.

http://www.ambystoma.org/

Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.

Proper citation: Sal-Site (RRID:SCR_002850) Copy   


http://www.ncrr.nih.gov/clinical_research_resources/resource_directory/general_clinical_research_centers/program_information/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Through the General Clinical Research Centers (GCRC) program, NCRR funds a national network that provides settings for medical investigators to conduct safe, controlled, state-of-the-art, in-patient and out-patient studies of both children and adults. GCRCs also provide infrastructure and resources that support several career development opportunities.

Proper citation: General Clinical Research Centers Program (RRID:SCR_002847) Copy   


http://www.jax.org/smsr/index.html

Resource of special strains of mice that are valuable tools for genetic analysis of complex diseases. They include panels of recombinant inbred (RI) and chromosome substitution (CS) strains.

Proper citation: Special Mouse Strains Resource (RRID:SCR_002885) Copy   


http://www.ouhsc.edu/compmed/documents/DevelopmentofaSpecificPathogenFreeBaboonColony.pdf

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 4th,2023. Program developing a self-sustaining colony of baboons free of all known herpesviruses, four retroviruses, and SV40 for research. When the program is fully developed, they will provide healthy, behaviorally normal, SPF baboons that are free of all known herpes viruses, four retroviruses, and SV40. To accomplish this goal, the center has established in collaboration with co-investigators and consultants serological and PCR tests for each of the 11 target viruses. These baboon viruses include six herpesviruses (analogs of human HSV, VZV, CMV, HHV6, EBV, and HHV8), four retroviruses (simian foamy virus, SRV/D, SIV, and STLV), and SV40. Twenty-four infant baboons are being recruited into the SPF program in each of the first five years, for a final total of at least 66 SPF baboons. All infants will be repeatedly tested for each of the target viruses. At one month of age, larger social groups of 4-6 SPF animals are formed. Beginning at 2-3 years of age, SPF animals will be integrated into larger socially compatible groups. These groups will eventually mature into breeding harems of SPF animals. This approach provides infants with age-matched companions for socialization during their early period of development, minimizes opportunities for transmission of viruses to the infants from adult animals, and allows for the simultaneous elimination of many different viruses from SPF animals.

Proper citation: Development of a Specific-Pathogen-Free Baboon Colony (RRID:SCR_002900) Copy   


  • RRID:SCR_003142

    This resource has 10+ mentions.

http://braininfo.rprc.washington.edu

Portal to neuroanatomical information on the Web that helps you identify structures in the brain and provides a variety of information about each structure by porting you to the best of 1500 web pages at 100 other neuroscience sites. BrainInfo consists of three basic components: NeuroNames, a developing database of definitions of neuroanatomic structures in four species, their most common acronyms and their names in eight languages; NeuroMaps, a digital atlas system based on 3-D canonical stereotaxic atlases of rhesus macaque and mouse brains and programs that enable one to map data to standard surface and cross-sectional views of the brains for presentation and publication; and the NeuroMaps precursor: Template Atlas of the Primate Brain, a 2-D stereotaxic atlas of the longtailed (fascicularis) macaque brain that shows the locations of some 250 architectonic areas of macaque cortex. The NeuroMaps atlases will soon include a number of overlays showing the locations of cortical areas and other neuroscientific data in the standard frameworks of the macaque and mouse atlases. Viewers are encouraged to use NeuroNames as a stable source of unique standard terms and acronyms for brain structures in publications, illustrations and indexing systems; to use templates extracted from the NeuroMaps macaque and mouse brain atlases for presenting neuroscientific information in image format; and to use the Template Atlas for warping to MRIs or PET scans of the macaque brain to estimate the stereotaxic locations of structures.

Proper citation: BrainInfo (RRID:SCR_003142) Copy   


http://www.socr.ucla.edu/

A hierarchy of portable online interactive aids for motivating, modernizing probability and statistics applications. The tools and resources include a repository of interactive applets, computational and graphing tools, instructional and course materials. The core SOCR educational and computational components include the following suite of web-based Java applets: * Distributions (interactive graphs and calculators) * Experiments (virtual computer-generated games and processes) * Analyses (collection of common web-accessible tools for statistical data analysis) * Games (interfaces and simulations to real-life processes) * Modeler (tools for distribution, polynomial and spectral model-fitting and simulation) * Graphs, Plots and Charts (comprehensive web-based tools for exploratory data analysis), * Additional Tools (other statistical tools and resources) * SOCR Java-based Statistical Computing Libraries * SOCR Wiki (collaborative Wiki resource) * Educational Materials and Hands-on Activities (varieties of SOCR educational materials), * SOCR Statistical Consulting In addition, SOCR provides a suite of tools for volume-based statistical mapping (http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_AnalysesCommandLine) via command-line execution and via the LONI Pipeline workflows (http://www.nitrc.org/projects/pipeline). Course instructors and teachers will find the SOCR class notes and interactive tools useful for student motivation, concept demonstrations and for enhancing their technology based pedagogical approaches to any study of variation and uncertainty. Students and trainees may find the SOCR class notes, analyses, computational and graphing tools extremely useful in their learning/practicing pursuits. Model developers, software programmers and other engineering, biomedical and applied researchers may find the light-weight plug-in oriented SOCR computational libraries and infrastructure useful in their algorithm designs and research efforts. The three types of SOCR resources are: * Interactive Java applets: these include a number of different applets, simulations, demonstrations, virtual experiments, tools for data visualization and analysis, etc. All applets require a Java-enabled browser (if you see a blank screen, see the SOCR Feedback to find out how to configure your browser). * Instructional Resources: these include data, electronic textbooks, tutorials, etc. * Learning Activities: these include various interactive hands-on activities. * SOCR Video Tutorials (including general and tool-specific screencasts).

Proper citation: Statistics Online Computational Resource (RRID:SCR_003378) Copy   


http://www.loni.usc.edu/BIRN/Projects/Mouse/

Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.

Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy   


  • RRID:SCR_002388

    This resource has 100+ mentions.

http://www.genenetwork.org/

Web platform that provides access to data and tools to study complex networks of genes, molecules, and higher order gene function and phenotypes. Sequence data (SNPs) and transcriptome data sets (expression genetic or eQTL data sets). Quantitative trait locus (QTL) mapping module that is built into GN is optimized for fast on-line analysis of traits that are controlled by combinations of gene variants and environmental factors. Used to study humans, mice (BXD, AXB, LXS, etc.), rats (HXB), Drosophila, and plant species (barley and Arabidopsis). Users are welcome to enter their own private data.

Proper citation: GeneNetwork (RRID:SCR_002388) Copy   


  • RRID:SCR_002767

    This resource has 1+ mentions.

http://www.macaque.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on June 8, 2020.Macaque genomic and proteomic resources and how they are providing important new dimensions to research using macaque models of infectious disease. The research encompasses a number of viruses that pose global threats to human health, including influenza, HIV, and SARS-associated coronavirus. By combining macaque infection models with gene expression and protein abundance profiling, they are uncovering exciting new insights into the multitude of molecular and cellular events that occur in response to virus infection. A better understanding of these events may provide the basis for innovative antiviral therapies and improvements to vaccine development strategies.

Proper citation: Macaque.org (RRID:SCR_002767) Copy   


http://loni.usc.edu/Software/

Portal provides list of software resources. LONI is leader in development of advanced computational algorithms and software for comprehensive and quantitative mapping of brain structure and function. Aims to encourage communication between users and LONI software engineers in order to improve effectiveness.

Proper citation: University of Southern California LONI Software (RRID:SCR_002802) Copy   


  • RRID:SCR_002698

http://www.loni.usc.edu/Software/FFT

Java library used for the execution of discrete Fourier transforms in 1-D, 2-D and 3-D through the implementation of Fast Fourier Transform (FFT) algorithms. * The FFT library has been written in Java for portability across different platforms, integrated into a single jar file for easy implementation. * The FFT library provides forward and backward fast Fourier transforms in 1-D, 2-D and 3-D with an easy-to-use manner. * The FFT requires the length equal to a number with an integer power of two. This library automatically examines the input data and detects the length to prevent improper execution.

Proper citation: FFT Library (RRID:SCR_002698) Copy   


  • RRID:SCR_002695

http://www.LONI.usc.edu/Software/ShapeViewer

Java-based geometry viewer that supports file formats used by Center for Computational Biology (CCB) researchers and provides necessary viewing functions. ShapeViewer uses ShapeTools library support to read and display LONI Ucf, VTX XML, FreeSurfer, Minc Obj (both binary and ascii), Open Dx, Gifti, and OFF format data files.

Proper citation: LONI ShapeViewer (RRID:SCR_002695) Copy   


http://www.loni.usc.edu/Software/SHIVA

A Java-based visualization and analysis application that can process 2D and 3D image files and provides convenient methods for users to overlay multiple datasets. * Simultaneous visualization of multiple image volumes. * Tools for labeling and masking of structures. * Framework for the Mouse Atlas Project.

Proper citation: Synchronized Histological Image Viewing Architecture (RRID:SCR_002690) Copy   


  • RRID:SCR_005619

    This resource has 1000+ mentions.

http://slicer.org/

A free, open source software package for visualization and image analysis including registration, segmentation, and quantification of medical image data. Slicer provides a graphical user interface to a powerful set of tools so they can be used by end-user clinicians and researchers alike. 3D Slicer is natively designed to be available on multiple platforms, including Windows, Linux and Mac Os X. Slicer is based on VTK (http://public.kitware.com/vtk) and has a modular architecture for easy addition of new functionality. It uses an XML-based file format called MRML - Medical Reality Markup Language which can be used as an interchange format among medical imaging applications. Slicer is primarily written in C++ and Tcl.

Proper citation: 3D Slicer (RRID:SCR_005619) Copy   


  • RRID:SCR_003424

    This resource has 1+ mentions.

http://portal.ncibi.org/gateway/mimiplugin.html

The Cytoscape MiMI Plugin is an open source interactive visualization tool that you can use for analyzing protein interactions and their biological effects. The Cytoscape MiMI Plugin couples Cytoscape, a widely used software tool for analyzing bimolecular networks, with the MiMI database, a database that uses an intelligent deep-merging approach to integrate data from multiple well-known protein interaction databases. The MiMI database has data on 119,880 molecules, 330,153 interactions, and 579 complexes. By querying the MiMI database through Cytoscape you can access the integrated molecular data assembled in MiMI and retrieve interactive graphics that display protein interactions and details on related attributes and biological concepts. You can interact with the visualization by expanding networks to the next nearest neighbors and zooming and panning to relationships of interest. You also can perceptually encode nodes and links to show additional attributes through color, size and the visual cues. You can edit networks, link out to other resources and tools, and access information associated with interactions that has been mined and summarized from the research literature information through a biology natural language processing database (BioNLP) and a multi-document summarization system, MEAD. Additionally, you can choose sub-networks of interest and use SAGA, a graph matching tool, to match these sub-networks to biological pathways.

Proper citation: MiMI Plugin for Cytoscape (RRID:SCR_003424) Copy   


https://code.google.com/p/proteomecommons-tranche/

A distributed file storage system that you can upload files to and download files from. All files uploaded to the repository are replicated several times to protect against their accidental loss. Files uploaded to the repository can be of any size, can be of any file type, and can be encrypted with a passphrase of your choosing. The Proteome Commons Tranche repository is the first instance of a Tranche repository. Tranche, was created so that anybody can take it and make their own Tranche repository. This is the first implementation of the Tranche software, and is useful as a test bed for the software. This repository relies on educational institutions to provide the hardware and facilities for Tranche servers. While we maintain a set of servers, the continued growth of this public resource will rely on the generosity of the institutions that use the repository most.

Proper citation: Proteome Commons Tranche repository (RRID:SCR_003441) Copy   


http://caties.cabig.upmc.edu/

The Cancer Text Information Extraction System (caTIES) provides tools for de-identification and automated coding of free-text structured pathology reports. It also has a client that can be used to search these coded reports. The client also supports Tissue Banking and Honest Broker operations. caTIES focuses on two important challenges of bioinformatics * Information extraction (IE) from free text * Access to tissue. Regarding the first challenge, information from free-text pathology documents represents a vital and often underutilized source of data for cancer researchers. Typically, extracting useful data from these documents is a slow and laborious manual process requiring significant domain expertise. Application of automated methods for IE provides a method for radically increasing the speed and scope with which this data can be accessed. Regarding the second challenge, there is a pressing need in the cancer research community to gain access to tissue specific to certain experimental criteria. Presently, there are vast quantities of frozen tissue and paraffin embedded tissue throughout the country, due to lack of annotation or lack of access to annotation these tissues are often unavailable to individual researchers. caTIES has three goals designed to solve these problems: * Extract coded information from free text Surgical Pathology Reports (SPRs), using controlled terminologies to populate caBIG-compliant data structures. * Provide researchers with the ability to query, browse and create orders for annotated tissue data and physical material across a network of federated sources. With caTIES the SPR acts as a locator to tissue resources. * Pioneer research for distributed text information extraction within the context of caBIG. caTIES focuses on IE from SPRs because they represent a high-dividend target for automated analysis. There are millions of SPRs in each major hospital system, and SPRs contain important information for researchers. SPRs act as tissue locators by indicating the presence of tissue blocks, frozen tissue and other resources, and by identifying the relationship of the tissue block to significant landmarks such as tumor margins. At present, nearly all important data within SPRs are embedded within loosely-structured free-text. For these reasons, SPRs were chosen to be coded through caTIES because facilitating access to information contained in SPRs will have a powerful impact on cancer research. Once SPR information has been run through the caTIES Pipeline, the data may be queried and inspected by the researcher. The goal of this search may be to extract and analyze data or to acquire slides of tissue for further study. caTIES provides two query interfaces, a simple query dashboard and an advanced diagram query builder. Both of these interfaces are capable of NCI Metathesaurus, concept-based searching as well as string searching. Additionally, the diagram interface is capable of advanced searching functionalities. An important aspect of the interface is the ability to manage queries and case sets. Users are able to vet query results and save them to case sets which can then be edited at a later time. These can be submitted as tissue orders or used to derive data extracts. Queries can also be saved, and modified at a later time. caTIES provides the following web services by default: MMTx Service, TIES Coder Service

Proper citation: caTIES - Cancer Text Information Extraction System (RRID:SCR_003444) Copy   


  • RRID:SCR_003732

    This resource has 50+ mentions.

http://www.isi.edu/integration/karma/

An information integration software tool that enables users to integrate data from a variety of data sources including databases, spreadsheets, delimited text files, XML, JSON, KML and Web APIs. Users integrate information by modeling it according to an ontology of their choice using a graphical user interface that automates much of the process. Karma learns to recognize the mapping of data to ontology classes and then uses the ontology to propose a model that ties together these classes. Users then interact with the system to adjust the automatically generated model. During this process, users can transform the data as needed to normalize data expressed in different formats and to restructure it. Once the model is complete, users can publish the integrated data as RDF or store it in a database.

Proper citation: Karma (RRID:SCR_003732) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X