Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A cooperative research program to explore the issues related to the complex system of offender treatment services. Nine research centers and a Coordinating Center were created in partnership with researchers, criminal justice professionals, and drug abuse treatment practitioners to form a national research infrastructure. The establishment of CJ-DATS is an outstanding example of cooperation among Federal agencies with the research community... We need to understand how to provide better drug treatment services for criminal justice offenders to alter their drug use and criminal behavior. - Dr. Nora Volkow, Director of NIDA. CJ-DATS PHASE I In 2002, NIDA launched the National Criminal Justice����������Drug Abuse Treatment Studies (CJ-DATS). CJ-DATS is a multisite research program aimed at improving the treatment of offenders with drug use disorders and integrating criminal justice and public health responses to drug involved offenders. From 2002 through 2008, CJ-DATS researchers from 9 research centers, a coordinating center, and NIDA worked together with federal, state, and local criminal justice partners to develop and test integrated approaches to the treatment of offenders with drug use disorders. The areas that were studied included: * Assessing Offender Problems * Measuring Progress in Treatment and Recovery * Linking Criminal Justice and Drug Abuse Treatment * Adolescent Interventions * HIV and Hepatitis Risk Reduction * Understanding Systems CJ-DATS PHASE II In 2008, CJ-DATS began to focus on the problems of implementing research-based practices drug treatment practices. This research concerns the organizational and systems processes involved in implementing valid, evidence-based practices to reduce drug use and drug-related recidivism for individuals in the criminal justice system. 12 CJ-DATS Research Centers are conducting implementation research in three primary domains: * Research to improve the implementation of evidence-based assessment processes for offenders with drug problems * Implementing effective treatment for drug-involved offenders * Implementing evidence-based interventions to improve an HIV continuum-of-care for offenders
Proper citation: Criminal Justice Drug Abuse Treatment Studies (RRID:SCR_006996) Copy
https://github.com/KumarLabJax/JABS-behavior-classifier
Video based phenotyping platform for laboratory mouse. Provides complete details of software and hardware, including 3D designs used for data collection. Data acquisition system consists of video collection hardware and software, behavior labeling and active learning app, and online database for sharing classifiers. Hardware and software solution collects high quality data for behavior analysis.
Proper citation: JAX Animal Behavior System (RRID:SCR_023721) Copy
https://github.com/SciCrunch/Antibody-Watch
Text mining antibody specificity from literature. Helps researchers identify potential problems with antibody specificity. By mining the scientific literature and linking findings to Research Resource Identifiers (RRIDs), it provides alerts on antibodies that may yield unreliable results, supporting reproducibility in biomedical research.
Proper citation: Antibody Watch (RRID:SCR_027424) Copy
http://compbio.uthsc.edu/miRSNP/
Database of naturally occurring DNA variations in microRNA (miRNA) seed regions and miRNA target sites. MicroRNAs pair to the transcripts of protein-coding genes and cause translational repression or mRNA destabilization. SNPs and INDELs in miRNAs and their target sites may affect miRNA-mRNA interaction, and hence affect miRNA-mediated gene repression. The PolymiRTS database was created by scanning 3'UTRs of mRNAs in human and mouse for SNPs and INDELs in miRNA target sites. Then, the potential downstream effects of these polymorphisms on gene expression and higher-order phenotypes are identified. Specifically, genes containing PolymiRTSs, cis-acting expression QTLs, and physiological QTLs in mouse and the results of genome-wide association studies (GWAS) of human traits and diseases are linked in the database. The PolymiRTS database also includes polymorphisms in target sites that have been supported by a variety of experimental methods and polymorphisms in miRNA seed regions.
Proper citation: PolymiRTS (RRID:SCR_003389) Copy
http://proteomics.ucsd.edu/Software/NeuroPedia/index.html
A neuropeptide encyclopedia of peptide sequences (including genomic and taxonomic information) and spectral libraries of identified MS/MS spectra of homolog neuropeptides from multiple species.
Proper citation: NeuroPedia (RRID:SCR_001551) Copy
http://lucene1.neuinfo.org/nif_resource/monthly_results/current/
An automatic pipeline based on an algorithm that identifies new resources in publications every month to assist the efficiency of NIF curators. The pipeline is also able to find the last time the resource's webpage was updated and whether the URL is still valid. This can assist the curator in knowing which resources need attention. Additionally, the pipeline identifies publications that reference existing NIF Registry resources as this is also of interest. These mentions are available through the Data Federation version of the NIF Registry, http://neuinfo.org/nif/nifgwt.html?query=nlx_144509 The RDF is based on an algorithm on how related it is to neuroscience. (hits of neuroscience related terms). Each potential resource gets assigned a score (based on how related it is to neuroscience) and the resources are then ranked and a list is generated.
Proper citation: NIF Registry Automated Crawl Data (RRID:SCR_012862) Copy
https://neuinfo.org/mynif/search.php?q=nlx_149462&t=indexable&list=cover&nif=nlx_144509-1
A virtual database that indexes both BioNOT for negation data, and the Resource Discovery Pipeline: an automated resource discovery and semi-automated type characterization with text-mining scripts that facilitate curation team efforts to discover, integrate and display new content. This virtual database currently indexes the following resources: * BioNOT, http://snake.ims.uwm.edu/bionot/index.php?searchterm=mecp2+autism&submit=Search * Resource Discovery Pipeline, http://lucene1.neuinfo.org/nif_resource/current/
Proper citation: Integrated Auto-Extracted Annotation (RRID:SCR_005892) Copy
http://mialab.mrn.org/data/index.html
An MRI data set that demonstrates the utility of a mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12-71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described, provide a useful baseline for future investigations of brain networks in health and disease.
Proper citation: MIALAB - Resting State Data (RRID:SCR_008914) Copy
A large multi-site pediatric MRI and genetics data resource to facilitate studies of the genomic landscape of the developing human brain. It includes information about the developing mental and emotional functions of the children to understand the genetic basis of individual differences in brain structure and connectivity, cognition, and personality. Investigators on the project are studying 1400 children between the ages of 3 and 20 years so that links between genetic variation and developing patterns of brain connectivity can be examined. Investigators interested in the effects of a particular gene will be able to search the database for any brain areas or connections between areas that differ as a function of variation in a particular gene, and also to determine if the genes appear to affect the course of brain development at some point during childhood. A data exploration tool has been created for mapping and analyzing MRI data sets collected for PING and related developmental studies. Approved investigators will be able to view raw image sets and derived 3D brain maps of MRI and DTI data, conduct hypothesis testing, and graph brain area measures as they change across the time course of development. PING Cores * Coordinating Core: Functions include project management, screening of participants and maintaining the database * Neuroimaging Core: applying a standardized high-resolution structural MRI protocol involving 3-D T1-weighted scans, a T2-weighted volume, and a set of diffusion-weighted scans with multiple b values and diffusion directions, scans to estimate MRI relaxation rates, and gradient echo EPI scans for resting state fMRI. Importantly, adaptive motion compensation, using ����??PROMO����??, a novel real-time motion correction algorithm will be used. Specific PING protocols for each scanner manufacturer: ** PING MRI Protocol - GE ** PING MRI Protocol - Philips ** PING MRI Protocol - Siemens * Assessment Core: Cognitive assessments for the PING project are conducted using the NIH Toolbox for Cognition. * Genomics Core: functions as a central repository for receipt of saliva samples collected for each study participant. Once received, samples are catalogued, maintained, and DNA is extracted using state-of-the-field laboratory techniques. Ultimately, genome-wide genotyping is performed on the extracted DNA using the Illumina Human660W-Quad BeadChip. PING involves 10 sites throughout the country including UCSD, University of Hawaii, Scripps Genomics, UCLA, UC Davis, Kennedy Krieger Institute/Johns Hopkins, Sacker Institute/Cornell University, University of Massachusetts, Massachusetts General Hospital/Harvard, and Yale. Families who may want to participate in the study, or others who want to know more about it, may email questions to ping (at) ucsd.edu.
Proper citation: Pediatric Imaging Neurocognition and Genetics (RRID:SCR_008953) Copy
https://doi.org/10.17605/OSF.IO/WDR78
Open source resource of manually curated and expert reviewed infant brain segmentations hosted on OpenNeuro.org. and OSF.io. Anatomical MRI data was segmented from 71 infant imaging visits across 51 participants, using both T1w and T2w images per visit. Images showed dramatic differences in myelination and intensities across 1–9 months, emphasizing the need for densely sampled gold-standard segmentations across early life. This dataset provides a benchmark for evaluating and improving pipelines dependent upon segmentations in the youngest populations. As such, this dataset provides a vitally needed foundation for early-life large-scale studies such as HBCD.
Proper citation: Baby Open Brains (RRID:SCR_027836) Copy
https://www.ohsu.edu/custom/library/digital-collections/projectionmap
Data set of thalamo-centric mesoscopic projection maps to the cortex and striatum. The maps are established through two-color, viral (rAAV)-based tracing images and high throughout imaging.
Proper citation: Mouse Thalamic Projectome Dataset (RRID:SCR_015702) Copy
Long-term study of brain development and child health in the United States. The study tracks subjects' biological and behavioral development through adolescence into young adulthood to determine how childhood experiences (such as sports, videogames, social media, unhealthy sleep patterns, and smoking) interact with each other and with a child’s changing biology to affect brain development and social, behavioral, academic, health, and other outcomes.
Proper citation: ABCD Study (RRID:SCR_015769) Copy
http://www.zfishbook.org/NGP/journalcontent/SCORE/SCORE.html
Narrative resource describing a visual data analysis and collection approach that takes advantage of the cylindrical nature of the zebrafish allowing for an efficient and effective method for image capture called, Specimen in a Corrected Optical Rotational Enclosure (SCORE) Imaging. To achieve a non-distorted image, zebrafish were placed in a fluorinated ethylene propylene (FEP) tube with a surrounding, optically corrected imaging solution: water. By similarly matching the refractive index of the housing (FEP tubing) to that of the inner liquid and outer liquid (water), distortion was markedly reduced, producing a crisp imagable specimen that is able to be fully rotated 360 degrees. A similar procedure was established for fixed zebrafish embryos using convenient, readily available borosilicate capillaries surrounded by 75% glycerol. The method described could be applied to chemical genetic screening and other, related high-throughput methods within the fish community and among other scientific fields.
Proper citation: Zebrafish - SCORE Imaging: Specimen in a Corrected Optical Rotational Enclosure (RRID:SCR_001300) Copy
http://mimi.ncibi.org/MimiWeb/main-page.jsp
MiMi Web gives you an easy to use interface to a rich NCIBI data repository for conducting your systems biology analyses. This repository includes the MiMI database, PubMed resources updated nightly, and text mined from biomedical research literature. The MiMI database comprehensively includes protein interaction information that has been integrated and merged from diverse protein interaction databases and other biological sources. With MiMI, you get one point of entry for querying, exploring, and analyzing all these data. MiMI provides access to the knowledge and data merged and integrated from numerous protein interactions databases and augments this information from many other biological sources. MiMI merges data from these sources with deep integration into its single database with one point of entry for querying, exploring, and analyzing all these data. MiMI allows you to query all data, whether corroborative or contradictory, and specify which sources to utilize. MiMI displays results of your queries in easy-to-browse interfaces and provides you with workspaces to explore and analyze the results. Among these workspaces is an interactive network of protein-protein interactions displayed in Cytoscape and accessed through MiMI via a MiMI Cytoscape plug-in. MiMI gives you access to more information than you can get from any one protein interaction source such as: * Vetted data on genes, attributes, interactions, literature citations, compounds, and annotated text extracts through natural language processing (NLP) * Linkouts to integrated NCIBI tools to: analyze overrepresented MeSH terms for genes of interest, read additional NLP-mined text passages, and explore interactive graphics of networks of interactions * Linkouts to PubMed and NCIBI's MiSearch interface to PubMed for better relevance rankings * Querying by keywords, genes, lists or interactions * Provenance tracking * Quick views of missing information across databases. Data Sources include: BIND, BioGRID, CCSB at Harvard, cPath, DIP, GO (Gene Ontology), HPRD, IntAct, InterPro, IPI, KEGG, Max Delbreuck Center, MiBLAST, NCBI Gene, Organelle DB, OrthoMCL DB, PFam, ProtoNet, PubMed, PubMed NLP Mining, Reactome, MINT, and Finley Lab. The data integration service is supplied under the conditions of the original data sources and the specific terms of use for MiMI. Access to this website is provided free of charge. The MiMI data is queryable through a web services api. The MiMI data is available in PSI-MITAB Format. These files represent a subset of the data available in MiMI. Only UniProt and RefSeq identifiers are included for each interactor, pathways and metabolomics data is not included, and provenance is not included for each interaction. If you need access to the full MiMI dataset please send an email to mimi-help (at) umich.edu.
Proper citation: Michigan Molecular Interactions (RRID:SCR_003521) Copy
miniTUBA is a web-based modeling system that allows clinical and biomedical researchers to perform complex medical/clinical inference and prediction using dynamic Bayesian network analysis with temporal datasets. The software allows users to choose different analysis parameters (e.g. Markov lags and prior topology), and continuously update their data and refine their results. miniTUBA can make temporal predictions to suggest interventions based on an automated learning process pipeline using all data provided. Preliminary tests using synthetic data and laboratory research data indicate that miniTUBA accurately identifies regulatory network structures from temporal data. miniTUBA represents in a network view possible influences that occur between time varying variables in your dataset. For these networks of influence, miniTUBA predicts time courses of disease progression or response to therapies. minTUBA offers a probabilistic framework that is suitable for medical inference in datasets that are noisy. It conducts simulations and learning processes for predictive outcomes. The DBN analysis conducted by miniTUBA describes from variables that you specify how multiple measures at different time points in various variables influence each other. The DBN analysis then finds the probability of the model that best fits the data. A DBN analysis runs every combination of all the data; it examines a large space of possible relationships between variables, including linear, non-linear, and multi-state relationships; and it creates chains of causation, suggesting a sequence of events required to produce a particular outcome. Such chains of causation networks - are difficult to extract using other machine learning techniques. DBN then scores the resulting networks and ranks them in terms of how much structured information they contain compared to all possible models of the data. Models that fit well have higher scores. Output of a miniTUBA analysis provides the ten top-scoring networks of interacting influences that may be predictive of both disease progression and the impact of clinical interventions and probability tables for interpreting results. The DBN analysis that miniTUBA provides is especially good for biomedical experiments or clinical studies in which you collect data different time intervals. Applications of miniTUBA to biomedical problems include analyses of biomarkers and clinical datasets and other cases described on the miniTUBA website. To run a DBN with miniTUBA, you can set a number of parameters and constrain results by modifying structural priors (i.e. forcing or forbidding certain connections so that direction of influence reflects actual biological relationships). You can specify how to group variables into bins for analysis (called discretizing) and set the DBN execution time. You can also set and re-set the time lag to use in the analysis between the start of an event and the observation of its effect, and you can select to analyze only particular subsets of variables.
Proper citation: miniTUBA (RRID:SCR_003447) Copy
SchistoDB is a genomic database for the parasitic organism Schistosoma mansoni, one of the major causative agents of schistosomiasis worldwide. It currently incorporates sequences and annotation for S. mansoni in a single user-friendly database. Several genomic scale analyses are available as well as ESTs, oligonucleotides, metabolic pathways and drugs. Make your data available: If you''d like to have your updates and/or datasets integrated in SchistoDB, drop us an email.
Proper citation: Schistosoma mansoni Database (RRID:SCR_004341) Copy
http://openconnectomeproject.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 9, 2023. Connectomes repository to facilitate the analysis of connectome data by providing a unified front for connectomics research. With a focus on Electron Microscopy (EM) data and various forms of Magnetic Resonance (MR) data, the project aims to make state-of-the-art neuroscience open to anybody with computer access, regardless of knowledge, training, background, etc. Open science means open to view, play, analyze, contribute, anything. Access to high resolution neuroanatomical images that can be used to explore connectomes and programmatic access to this data for human and machine annotation are provided, with a long-term goal of reconstructing the neural circuits comprising an entire brain. This project aims to bring the most state-of-the-art scientific data in the world to the hands of anybody with internet access, so collectively, we can begin to unravel connectomes. Services: * Data Hosting - Their Bruster (brain-cluster) is large enough to store nearly any modern connectome data set. Contact them to make your data available to others for any purpose, including gaining access to state-of-the-art analysis and machine vision pipelines. * Web Viewing - Collaborative Annotation Toolkit for Massive Amounts of Image Data (CATMAID) is designed to navigate, share and collaboratively annotate massive image data sets of biological specimens. The interface is inspired by Google Maps, enhanced to allow the exploration of 3D image data. View the fork of the code or go directly to view the data. * Volume Cutout Service - RESTful API that enables you to select any arbitrary volume of the 3d database (3ddb), and receive a link to download an HDF5 file (for matlab, C, C++, or C#) or a NumPy pickle (for python). Use some other programming language? Just let them know. * Annotation Database - Spatially co-registered volumetric annotations are compactly stored for efficient queries such as: find all synapses, or which neurons synapse onto this one. Create your own annotations or browse others. *Sample Downloads - In addition to being able to select arbitrary downloads from the datasets, they have also collected a few choice volumes of interest. * Volume Viewer - A web and GPU enabled stand-alone app for viewing volumes at arbitrary cutting planes and zoom levels. The code and program can be downloaded. * Machine Vision Pipeline - They are building a machine vision pipeline that pulls volumes from the 3ddb and outputs neural circuits. - a work in progress. As soon as we have a stable version, it will be released. * Mr. Cap - The Magnetic Resonance Connectome Automated Pipeline (Mr. Cap) is built on JIST/MIPAV for high-throughput estimation of connectomes from diffusion and structural imaging data. * Graph Invariant Computation - Upload your graphs or streamlines, and download some invariants. * iPad App - WholeSlide is an iPad app that accesses utilizes our open data and API to serve images on the go.
Proper citation: Open Connectome Project (RRID:SCR_004232) Copy
http://www.nida.nih.gov/mediaguide/index.html
The latest findings on the science of drug abuse and addiction and commonly abused drugs, and lists resources for more information. They are committed to bringing timely, factual information on addiction and treatment to the press and public. NIDA''s Public Information and Liaison Branch (PILB) is part of NIDA''s Office of Science Policy and Communications. Linking scientists, the scientific community, and the media, PILB supports the rapid dissemination of research information to inform policy and to improve practice. NIDA''s goal is to ensure that science - not ideology or anecdote - forms the foundation of public information on drug abuse and addiction. NIDAs online MEDIA GUIDE provides answers on how to find what you need to know about drug abuse and addiction, including information on the basics (The Science of Drug Abuse and Addiction and Commonly Abused Drugs), resources (Where to Find Nationwide Trends and Statistics, NIDA Resources, and Other Government Web Sites for Health and Science Information), NIDAs history and background, a glossary and relevant contact information. NIDA is pleased to offer this guide to the important findings that are emerging as a result of research on addiction and its treatment. NIDA, part of the National Institutes of Health under the U.S. Department of Health and Human Services, supports most of the world''s research on drug abuse and addiction, including basic and behavioral science research that addresses fundamental and essential questions relevant to drug abuse, ranging from its causes and consequences to its treatment and prevention. The purpose of this guide is to give journalists fast and user-friendly access to the latest scientific information but it is useful for anyone interested in how to access accurate information about drug abuse and addiction. In more than three decades as a researcher, I have seen the impact that science and health journalists have had in bringing scientific research to the public. It is through information that Americans gain hope and understanding. I have come to know many of you over the years and remain committed to releasing scientific information as quickly as possible for rapid dissemination to the public. Please keep this guide nearby as a useful tool and let us know how NIDA''s public liaison staff can help you reach your information and deadline needs. A PDF version is available for download.
Proper citation: National Institute on Drug Abuse Media Guide (RRID:SCR_006850) Copy
http://hendrix.imm.dtu.dk/software/lyngby/
Matlab toolbox for the analysis of functional neuroimages (PET, fMRI). The toolbox contains a number of models: FIR-filter, Lange-Zeger, K-means clustering among others, visualizations and reading of neuroimaging files.
Proper citation: Lyngby (RRID:SCR_007143) Copy
Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.
Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.