Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://nematode.lab.nig.ac.jp/
Expression pattern map of the 100Mb genome of the nematode Caenorhabditis elegans through EST analysis and systematic whole mount in situ hybridization. NEXTDB is the database to integrate all information from their expression pattern project and to make the data available to the scientific community. Information available in the current version is as follows: * Map: Visual expression of the relationships among the cosmids, predicted genes and the cDNA clones. * Image: In situ hybridization images that are arranged by their developmental stages. * Sequence: Tag sequences of the cDNA clones are available. * Homology: Results of BLASTX search are available. Users of the data presented on our web pages should not publish the information without our permission and appropriate acknowledgment. Methods are available for: * In situ hybridization on whole mount embryos of C.elegans * Protocols for large scale in situ hybridization on C.elegans larvae
Proper citation: NEXTDB (RRID:SCR_004480) Copy
Open source environment for sharing, processing and analyzing stem cell data bringing together stem cell data sets with tools for curation, dissemination and analysis. Standardization of the analytical approaches will enable researchers to directly compare and integrate their results with experiments and disease models in the Commons. Key features of the Stem Cell Commons * Contains stem cell related experiments * Includes microarray and Next-Generation Sequencing (NGS) data from human, mouse, rat and zebrafish * Data from multiple cell types and disease models * Carefully curated experimental metadata using controlled vocabularies * Export in the Investigation-Study-Assay tabular format (ISA-Tab) that is used by over 30 organizations worldwide * A community oriented resource with public data sets and freely available code in public code repositories such as GitHub Currently in development * Development of Refinery, a novel analysis platform that links Commons data to the Galaxy analytical engine * ChIP-seq analysis pipeline (additional pipelines in development) * Integration of experimental metadata and data files with Galaxy to guide users to choose workflows, parameters, and data sources Stem Cell Commons is based on open source software and is available for download and development.
Proper citation: Stem Cell Commons (RRID:SCR_004415) Copy
http://www.ncbi.nlm.nih.gov/biosystems/
Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.
Proper citation: NCBI BioSystems Database (RRID:SCR_004690) Copy
Non-profit academic organization for research and services in bioinformatics. Provides freely available data from life science experiments, performs basic research in computational biology, and offers user training programme, manages databases of biological data including nucleic acid, protein sequences, and macromolecular structures. Part of EMBL.
Proper citation: European Bioinformatics Institute (RRID:SCR_004727) Copy
http://www.proconsortium.org/pro/
An ontological representation of protein-related entities by explicitly defining them and showing the relationships between them. Each PRO term represents a distinct class of entities (including specific modified forms, orthologous isoforms, and protein complexes) ranging from the taxon-neutral to the taxon-specific. The ontology has a meta-structure encompassing three areas: proteins based on evolutionary relatedness (ProEvo); protein forms produced from a given gene locus (ProForm); and protein-containing complexes (ProComp). NOTICE: The PRO ID format has changed from PRO: to PR: (e.g. PRO:000000563 is now PR:000000563).
Proper citation: PR (RRID:SCR_004964) Copy
GenMAPP is a free computer application designed to visualize gene expression and other genomic data on maps representing biological pathways and groupings of genes. Integrated with GenMAPP are programs to perform a global analysis of gene expression or genomic data in the context of hundreds of pathway MAPPs and thousands of Gene Ontology Terms (MAPPFinder), import lists of genes/proteins to build new MAPPs (MAPPBuilder), and export archives of MAPPs and expression/genomic data to the web. The main features underlying GenMAPP are: *Draw pathways with easy to use graphics tools *Color genes on MAPP files based on user-imported genomic data *Query data against MAPPs and the GeneOntology Enhanced features include the simultaneous view of multiple color sets, expanded species-specific gene databases and custom database options.
Proper citation: Gene Map Annotator and Pathway Profiler (RRID:SCR_005094) Copy
https://www.rostlab.org/services/snpdbe/
A database to fill the annotation gap left by the high cost of experimental testing for functional significance of protein variants. It joins related bits of knowledge, currently distributed throughout various databases, into a consistent, easily accessible, and updatable resource. It currently covers over 155,000 protein sequences which come from more than 2,600 organisms. Overall more than one million single amino acid substitutions (SAASs) are referenced consisting of natural variants, SAASs from mutagenesis experiments and sequencing conflicts. SNPdbe offers the following pieces of information (if available) on each SAAS: * Experimentally derived functional and structural impact * Predicted functional effect * Associated disease * Average heterozygosity * Experimental evidence of the nsSNP * Evolutionary conservation of wildtype and mutant amino acid * Link-outs to external databases A convenient webinterface to query SAASs on the following levels is offered: * Protein and gene identifiers and keywords * Disease keywords * Protein sequence on different sequence identity thresholds * Variant identifier (dbSNP rs, SwissVar, PMD) or specific mutant like XposY and specified sequence They offer the possibility to submit protein sequences along with experimentally substantiated mutations in order to predict their functional effect and inclusion into our database.
Proper citation: SNPdbe (RRID:SCR_005190) Copy
Software for a Laboratory Information Management System (LIMS) developed to support the unpredictable workflows of Molecular biology and Protein production labs of all sizes.
Proper citation: PiMS (RRID:SCR_011816) Copy
Web based instant protein network modeler for newly sequenced species. Web server designed to instantly construct genome scale protein networks using protein sequence data. Provides network visualization, analysis pages and solution for instant network modeling of newly sequenced species.
Proper citation: JiffyNet (RRID:SCR_011954) Copy
http://pathways.mcdb.ucla.edu/algal/
Tools to search gene lists for functional term enrichment as well as to dynamically visualize proteins onto pathway maps. Additionally, integrated expression data may be used to discover similarly expressed genes based on a starting gene of interest.
Proper citation: Algal Functional Annotation Tool (RRID:SCR_012034) Copy
http://salilab.org/modeller/modeller.html
Software tool as Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints. Used for homology or comparative modeling of protein three dimensional structures. User provides alignment of sequence to be modeled with known related structures and MODELLER automatically calculates model containing all non hydrogen atoms.
Proper citation: MODELLER (RRID:SCR_008395) Copy
The Distributed Annotation System (DAS) defines a communication protocol used to exchange annotations on genomic or protein sequences. It is motivated by the idea that such annotations should not be provided by single centralized databases, but should instead be spread over multiple sites. Data distribution, performed by DAS servers, is separated from visualization, which is done by DAS clients. The advantages of this system are that control over the data is retained by data providers, data is freed from the constraints of specific organisations and the normal issues of release cycles, API updates and data duplication are avoided. DAS is a client-server system in which a single client integrates information from multiple servers. It allows a single machine to gather up sequence annotation information from multiple distant web sites, collate the information, and display it to the user in a single view. Little coordination is needed among the various information providers. DAS is heavily used in the genome bioinformatics community. Over the last years we have also seen growing acceptance in the protein sequence and structure communities. A DAS-enabled website or application can aggregate complex and high-volume data from external providers in an efficient manner. For the biologist, this means the ability to plug in the latest data, possibly including a user''s own data. For the application developer, this means protection from data format changes and the ability to add new data with minimal development cost. Here are some examples of DAS-enabled applications or websites for end users: :- Dalliance Experimental Web/Javascript based Genome Viewer :- IGV Integrative Genome Viewer java based browser for many genomes :- Ensembl uses DAS to pull in genomic, gene and protein annotations. It also provides data via DAS. :- Gbrowse is a generic genome browser, and is both a consumer and provider of DAS. :- IGB is a desktop application for viewing genomic data. :- SPICE is an application for projecting protein annotations onto 3D structures. :- Dasty2 is a web-based viewer for protein annotations :- Jalview is a multiple alignment editor. :- PeppeR is a graphical viewer for 3D electron microscopy data. :- DASMI is an integration portal for protein interaction data. :- DASher is a Java-based viewer for protein annotations. :- EpiC presents structure-function summaries for antibody design. :- STRAP is a STRucture-based sequence Alignment Program. Hundreds of DAS servers are currently running worldwide, including those provided by the European Bioinformatics Institute, Ensembl, the Sanger Institute, UCSC, WormBase, FlyBase, TIGR, and UniProt. For a listing of all available DAS sources please visit the DasRegistry. Sponsors: The initial ideas for DAS were developed in conversations with LaDeana Hillier of the Washington University Genome Sequencing Center.
Proper citation: Distributed Annotation System (RRID:SCR_008427) Copy
http://tigger.uic.edu/~cjeffery/
The moonlighting protein database is not yet available publicly. Stay tuned. Moonlighting proteins have multiple, seemingly unrelated functions not due to gene fusions or alternative splicing. Like PGI, which is a cytosolic enzyme and an extracellular cytokine, dozens of other proteins have been found to moonlight. Connie coined the term moonlighting proteins and has written several review articles that develop the idea of moonlighting proteins and describe additional moonlighting proteins from the literature, how they switch between functions, how they might have evolved, and how they might benefit the cell. She is currently writing two additional invited articles and planning computational studies of the sequences and structures of known moonlighting proteins.
Proper citation: MoonProt (RRID:SCR_008803) Copy
APID Interactomes (Agile Protein Interactomes DataServer) provides information on the protein interactomes of numerous organisms, based on the integration of known experimentally validated protein-protein physical interactions (PPIs). The interactome data includes a report on quality levels and coverage over the proteomes for each organism included. APID integrates PPIs from primary databases of molecular interactions (BIND, BioGRID, DIP, HPRD, IntAct, MINT) and also from experimentally resolved 3D structures (PDB) where more than two distinct proteins have been identified. This collection references protein interactors, through a UniProt identifier.
Proper citation: Agile Protein Interactomes DataServer (RRID:SCR_008871) Copy
http://clipserve.clip.ubc.ca/topfind
An integrated knowledgebase focused on protein termini, their formation by proteases and functional implications. It contains information about the processing and the processing state of proteins and functional implications thereof derived from research literature, contributions by the scientific community and biological databases. It lists more than 120,000 N- and C-termini and almost 10,000 cleavages. TopFIND is a resource for comprehensive coverage of protein N- and C-termini discovered by all available in silico, in vitro as well as in vivo methodologies. It makes use of existing knowledge by seamless integration of data from UniProt and MEROPS and provides access to new data from community submission and manual literature curating. It renders modifications of protein termini, such as acetylation and citrulination, easily accessible and searchable and provides the means to identify and analyse extend and distribution of terminal modifications across a protein. The data is presented to the user with a strong emphasis on the relation to curated background information and underlying evidence that led to the observation of a terminus, its modification or proteolytic cleavage. In brief the protein information, its domain structure, protein termini, terminus modifications and proteolytic processing of and by other proteins is listed. All information is accompanied by metadata like its original source, method of identification, confidence measurement or related publication. A positional cross correlation evaluation matches termini and cleavage sites with protein features (such as amino acid variants) and domains to highlight potential effects and dependencies in a unique way. Also, a network view of all proteins showing their functional dependency as protease, substrate or protease inhibitor tied in with protein interactions is provided for the easy evaluation of network wide effects. A powerful yet user friendly filtering mechanism allows the presented data to be filtered based on parameters like methodology used, in vivo relevance, confidence or data source (e.g. limited to a single laboratory or publication). This provides means to assess physiological relevant data and to deduce functional information and hypotheses relevant to the bench scientist. TopFIND PROVIDES: * Integration of protein termini with proteolytic processing and protein features * Displays proteases and substrates within their protease web including detailed evidence information * Fully supports the Human Proteome Project through search by chromosome location CONTRIBUTE * Submit your N- or C-termini datasets * Contribute information on protein cleavages * Provide detailed experimental description, sample information and raw data
Proper citation: TopFIND (RRID:SCR_008918) Copy
PDBj (Protein Data Bank Japan) maintains a centralized PDB archive of macromolecular structures and provides integrated tools, in collaboration with the RCSB, the BMRB in USA and the PDBe in EU.
Proper citation: PDBj - Protein Data Bank Japan (RRID:SCR_008912) Copy
http://www.bioextract.org/GuestLogin
An open, web-based system designed to aid researchers in the analysis of genomic data by providing a platform for the creation of bioinformatic workflows. Scientific workflows are created within the system by recording tasks performed by the user. These tasks may include querying multiple, distributed data sources, saving query results as searchable data extracts, and executing local and web-accessible analytic tools. The series of recorded tasks can then be saved as a reproducible, sharable workflow available for subsequent execution with the original or modified inputs and parameter settings. Integrated data resources include interfaces to the National Center for Biotechnology Information (NCBI) nucleotide and protein databases, the European Molecular Biology Laboratory (EMBL-Bank) non-redundant nucleotide database, the Universal Protein Resource (UniProt), and the UniProt Reference Clusters (UniRef) database. The system offers access to numerous preinstalled, curated analytic tools and also provides researchers with the option of selecting computational tools from a large list of web services including the European Molecular Biology Open Software Suite (EMBOSS), BioMoby, and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The system further allows users to integrate local command line tools residing on their own computers through a client-side Java applet.
Proper citation: BioExtract (RRID:SCR_005397) Copy
http://llama.mshri.on.ca/synergizer/translate/
The Synergizer database is a growing repository of gene and protein identifier synonym relationships. This tool facilitates the conversion of identifiers from one naming scheme (a.k.a namespace) to another. The Synergizer is a service for translating between sets of biological identifiers. It can, for example, translate Ensembl Gene IDs to Entrez Gene IDs, or IPI IDs to HGNC gene symbols, and much more. Unlike some other tools for this purpose, The Synergizer is simple and easy to learn. The Synergizer works via a web interface (for users who are not programmers) or through a web service (for programmatic access).
Proper citation: Synergizer (RRID:SCR_005308) Copy
http://users-birc.au.dk/biopv/php/fabox/
Tools for splitting, joining and otherwise manipulating FASTA format sequence files. The first tools in the toolbox is for manipulating fasta headers, cropping alignments and doing some sequence comparison allowing users to combine the description of data (often in excel spreadsheets) with the actual data (often DNA sequences). Also, producing correct input files for a range of programs seems to be problematic for the average user. Hence, some converters in some of the services have been included as well as some stand-alone converters. The converters are not necessarily meant to provide the final input file, but you''ll get a valid input file for Arlequin, MrBayes etc. - that you may further edit so it suit your needs. This means that you may need to combine several of the tools to finish your handling - but it keeps it relatively simple to use. Please note that FaBox is written in PHP and ONLY RUNS ON A WEBSERVER.
Proper citation: FaBox (RRID:SCR_005350) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.