Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.loni.usc.edu/Software/moreinfo.php?package=BGE
A JAVA application designed to create taxonomies or hierarchies in order to classify and organize information.
Proper citation: BrainGraph Editor (RRID:SCR_009536) Copy
http://www.openbioinformatics.org/annovar/
An efficient software tool to utilize update-to-date information to functionally annotate genetic variants detected from diverse genomes (including human genome hg18, hg19, as well as mouse, worm, fly, yeast and many others). Given a list of variants with chromosome, start position, end position, reference nucleotide and observed nucleotides, ANNOVAR can perform: 1. gene-based annotation. 2. region-based annotation. 3. filter-based annotation. 4. other functionalities. (entry from Genetic Analysis Software)
Proper citation: ANNOVAR (RRID:SCR_012821) Copy
http://www.nitrc.org/projects/se_linux/
Software tools optimized for performing univariate and multivariate imaging genetics analyses while providing practical correction strategies for multiple testing. The goal of this project is to merge two important research directions in modern science, genetics and neuroimaging. This entails combining modern statistical genetic methods and quantitative phenotyping performed with high dimensional neuroimaging modalities. So far, however, standard imaging tools are unable to deal with large-scale genetics data, and standard genetics tools, in turn, are unable to accommodate large size and binary format of the image data. Their focus is to create imaging genetics tools for classical genetic and epigenetic epidemiological analyses such as heritability, pleiotropy, quantitative trait loci (QTL) and genome-wide association (GWAS), gene expression, and methylation analyses optimized for traits derived from structural and functional brain imaging data
Proper citation: Solar Eclipse Imaging Genetics tools (RRID:SCR_009645) Copy
http://www.nitrc.org/projects/gppi/
An automated toolbox for a generalized form of psychophysiological interactions for SPM and FSFAST. The automated toolbox can do the following: (a1) produce identical results to the current implementation in SPM (a2) use the current implementation of PPI in SPM but using the regional mean instead of the eigenvariate (a3) use a generalized form that allows a PPI for each task to be in the same model using either the regional mean of eigenvariate (b) create the model using the output of one of the (a) options and the first level design (c) estimate the model (/results directory) (d) compute the contrasts specified.
Proper citation: Generalized PPI Toolbox (RRID:SCR_009489) Copy
A MATLAB toolbox forpipeline data analysis of resting-state fMRI that is based on Statistical Parametric Mapping (SPM) and a plug-in software within DPABI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), fractional ALFF, degree centrality, voxel-mirrored homotopic connectivity (VMHC) results. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest. DPARSF basic edition is very easy to use while DPARSF advanced edition (alias: DPARSFA) is much more flexible and powerful. DPARSFA can parallel the computation for each subject, and can be used to reorient images interactively or define regions of interest interactively. Users can skip or combine the processing steps in DPARSF advanced edition freely.
Proper citation: DPARSF (RRID:SCR_002372) Copy
A toolbox for Statistical Parametric Mapping (SPM) that provides an extensible framework for voxel level non-parametric permutation/randomization tests of functional Neuroimaging experiments with independent observations. SnPM uses the General Linear Model to construct pseudo t-statistic images, which are then assessed for significance using a standard non-parametric multiple comparisons procedure based on randomization/permutation testing. It is most suitable for single subject PET/SPECT analyses, or designs with low degrees of freedom available for variance estimation. In these situations the freedom to use weighted locally pooled variance estimates, or variance smoothing, makes the non-parametric approach considerably more powerful than conventional parametric approaches, as are implemented in SPM. Further, the non-parametric approach is always valid, given only minimal assumptions. The SnPM toolbox provides an alternative to the Statistics section of SPM.
Proper citation: Statistical non-Parametric Mapping (RRID:SCR_002092) Copy
http://www.nitrc.org/projects/wlfusion/
Matlab toolbox that implements the wavelet-based image fusion technique for orthogonal images, introduced in (Aganj et al, MRM 2012).
Proper citation: Wavelet-based Image Fusion (RRID:SCR_002007) Copy
http://www.nitrc.org/projects/nihgrantees/
This project is meant for planning the NITRC Grantee meetings. A website for organizing meetings for the Neuroimaging Informatics Tools and Resources Clearinghouse, to facilitate participants meeting one another, and promote discussion of common interests and collaboration.
Proper citation: Grantees Meeting for NITRC (RRID:SCR_000419) Copy
http://aimlab.cs.uoregon.edu/NEMO/web/
THIS RESOURCE IS NO LONGER IN SERVICE. NIH tombstone webpage lists Project Period : 2009 - 2013. NIH funded project to create EEG and MEG ontologies and ontology based tools. These resources will be used to support representation, classification, and meta-analysis of brain electromagnetic data. Three pillars of NEMO are: DATA, ONTOLOGY, and DATABASE. NEMO data consist of raw EEG, averaged EEG (ERPs), and ERP data analysis results. NEMO ontologies include concepts related to ERP data (including spatial and temporal features of ERP patterns), data provenance, and cognitive and linguistic paradigms that were used to collect data. NEMO database portal is large repository that stores NEMO consortium data, data analysis results, and data provenance. EEG and MEG ontologies and ontology-based tools to support representation, classification, and meta-analysis of brain electromagnetic data. Raw EEG and ERP data may be uploaded to the NEMO FTP site., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Neural ElectroMagnetic Ontologies (NEMO) Project (RRID:SCR_002001) Copy
http://www.nitrc.org/projects/iowa3/
Software for real-time parametric statistical analysis of functional MRI (fMRI) data. The system that combines a general architecture for sampling and time-stamping relevant information channels in fMRI (image acquisition, stimulation, subject responses, cardiac and respiratory monitors, etc.) and an efficient approach to manipulating these data, featuring incremental subsecond multiple linear regression. The advantages of the system are the simplification of event timing and efficient and unified data formatting. Substantial parametric analysis can be performed and displayed in real-time. Immediate (replay) and delayed off-line analysis can also be performed with the same interface. The system provides a time-accounting infrastructure that readily supports standard and innovative approaches to fMRI.
Proper citation: I/OWA (RRID:SCR_000858) Copy
http://www.imagescience.org/meijering/software/neuronj/
NeuronJ is an ImageJ plugin to facilitate the tracing and quantification of elongated structures in two-dimensional (2D) images (8-bit gray-scale and indexed color), in particular neurites in fluorescence microscopy images. Sponsors: The development of NeuronJ started while the primary developer ( Dr. Erik Meijering, PhD) was with the Biomedical Imaging Group (collaborating with people from the Laboratory of Cellular Neurobiology) of the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland, and was finished while Dr. Meijering was with the Biomedical Imaging Group Rotterdam in the Netherlands.
Proper citation: NeuronJ: An ImageJ Plugin for Neurite Tracing and Quantification (RRID:SCR_002074) Copy
http://niftyrec.scienceontheweb.net/
Software toolbox that includes reconstruction tools for emission and transmission imaging modalities, including Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), cone-beam X-Ray CT and parallel-beam X-Ray CT. At the core of NiftyRec are efficient, GPU accelerated, projection, back-projection and iterative reconstruction algorithms. The easy to use Matlab and Python interfaces of NiftyRec enable fast prototyping and development of reconstruction algorithms. NiftyRec includes standard iterative reconstruction algorithms such as Maximum Likelihood Expectation Maximisation (MLEM), Ordered Subsets Expectation Maximisation (OSEM) and One Step Late Maximum A Posteriori Expectation Maximisation (OSL-MAPEM), for multiple imaging modalities.
Proper citation: NiftyRec (RRID:SCR_002499) Copy
http://icatb.sourceforge.net/fusion/fusion_startup.php
A MATLAB toolbox which implements the joint Independent Component Analysis (ICA), parallel ICA and CCA with joint ICA methods. It is used to to extract the shared information across modalities like fMRI, EEG, sMRI and SNP data. * Environment: Win32 (MS Windows), Gnome, KDE * Operating System: MacOS, Windows, Linux * Programming Language: MATLAB * Supported Data Format: ANALYZE, NIfTI-1
Proper citation: Fusion ICA Toolbox (RRID:SCR_003494) Copy
Mindboggle (http://mindboggle.info) is open source software for analyzing the shapes of brain structures from human MRI data. The following publication in PLoS Computational Biology documents and evaluates the software: Klein A, Ghosh SS, Bao FS, Giard J, Hame Y, Stavsky E, Lee N, Rossa B, Reuter M, Neto EC, Keshavan A. (2017) Mindboggling morphometry of human brains. PLoS Computational Biology 13(3): e1005350. doi:10.1371/journal.pcbi.1005350
Proper citation: Mindboggle (RRID:SCR_002438) Copy
http://www.nitrc.org/projects/sri24/
An MRI-based atlas of normal adult human brain anatomy, generated by template-free nonrigid registration from images of 24 normal control subjects. The atlas comprises T1, T2, and PD weighted structural MRI, tissue probability maps (GM, WM, CSF), maximum-likelihood tissue segmentation, DTI-based measures (FA, MD, longitudinal and transversal diffusivity), and two labels maps of cortical regions and subcortical structures. The atlas is provided at 1mm isotropic image resolution in Analyze, NIFTI, and Nrrd format. We are also providing an experimental packaging for use with SPM8.
Proper citation: SRI24 Atlas: Normal Adult Brain Anatomy (RRID:SCR_002551) Copy
http://www.nitrc.org/projects/surfacestat/
Software tool for performing a per vertex statistical analysis across a population. The underlying statistical framework uses the R language.
Proper citation: BRAINSSurfaceStats (RRID:SCR_002582) Copy
http://www.nitrc.org/projects/unc_brain_atlas
Human brain atlases for adult, pediatric and elderly populations, by iterative joint deformable registration of training datasets into a single unbiased average image. Atlases packages include T1-weighted images, tissue priors (WM,GM,CSF), lobar parcellation maps and subcortical structures. Current available atlases: * Adult atlas: Symmetric atlas generated from 50+ healthy adult subjects (20-59 year old). * UNC-MNI Pediatric 1-year-old atlas: Symmetric atlas generated from 104 1-year-old subjects, combining children at high familial risk of autism and controls. * Pediatric 4-year-old atlas: Symmetric atlas generated from 10 4-year-old healthy subjects. * Elderly atlas: Atlas generated from 27 healthy elderly subjects (60+ years old). Additional information and acknowledgment for their usage can be found by clicking on the release notes.
Proper citation: UNC Human Brain Atlas (RRID:SCR_002606) Copy
https://neuinfo.org/mynif/search.php?list=cover&q=*
Service that partners with the community to expose and simultaneously drill down into individual databases and data sets and return relevant content. This type of content, part of the so called hidden Web, is typically not indexed by existing web search engines. Every record links back to the originating site. In order for NIF to directly query these independently maintained databases and datasets, database providers must register their database or dataset with the NIF Data Federation and specify permissions. Databases are concept mapped for ease of sharing and to allow better understanding of the results. Learn more about registering your resource, http://neuinfo.org/nif_components/disco/interoperation.shtm Search results are displayed under the Data Federation tab and are categorized by data type and nervous system level. In this way, users can easily step through the content of multiple resources, all from the same interface. Each federated resource individually displays their query results with links back to the relevant datasets within the host resource. This allows users to take advantage of additional views on the data and tools that are available through the host database. The NIF site provides tutorials for each resource, indicated by the Professor Icon professor icon showing users how to navigate the results page once directed there through the NIF. Additionally, query results may be exported as an Excel document. Note: NIF is not responsible for the availability or content of these external sites, nor does NIF endorse, warrant or guarantee the products, services or information described or offered at these external sites. Integrated Databases: Theses virtual databases created by NIF and other partners combine related data indexed from multiple databases and combine them into one view for easier browsing. * Integrated Animal View * Integrated Brain Gene Expression View * Integrated Disease View * Integrated Nervous System Connectivity View * Integrated Podcasts View * Integrated Software View * Integrated Video View * Integrated Jobs * Integrated Blogs For a listing of the Federated Databases see, http://neuinfo.org/mynif/databaseList.php or refer to the Resources Listed by NIF Data Federation table below.
Proper citation: NIF Data Federation (RRID:SCR_004834) Copy
https://as.nyu.edu/research-centers/cbi/resources/Software.html
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. Software which converts DICOM images to NIfTI format.
Proper citation: dinifti (RRID:SCR_000303) Copy
http://www.sci.utah.edu/cibc/software/131-shapeworks.html
THIS RESOURCE IS NO LONGER IN SERVICE.Documented on September 2, 2022. Software that is an open-source distribution of a new method for constructing compact statistical point-based models of ensembles of similar shapes that does not rely on any specific surface parameterization. The method requires very little preprocessing or parameter tuning, and is applicable to a wide range of shape analysis problems, including nonmanifold surfaces and objects of arbitrary topology. The proposed correspondence point optimization uses an entropy-based minimization that balances the simplicity of the model (compactness) with the accuracy of the surface representations. The ShapeWorks software includes tools for preprocessing data, computing point-based shape models, and visualizing the results.
Proper citation: ShapeWorks (RRID:SCR_000424) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.