Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 8 showing 141 ~ 160 out of 786 results
Snippet view Table view Download 786 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_001398

    This resource has 100+ mentions.

https://www.mristudio.org/

An image processing program running under Windows suitable for such tasks as tensor calculation, color mapping, fiber tracking, and 3D visualization. Most of operations can be done with only a few clicks. This tool evolved from DTI Studio. Tools in the program can be grouped in the following way: * Image Viewer * Diffusion Tensor Calculations * Fiber Tracking and Editing * 3D Visualization * Image File Management * Region of Interesting (ROI) Drawing and Statistics * Image Registration

Proper citation: MRI Studio (RRID:SCR_001398) Copy   


  • RRID:SCR_001592

    This resource has 10+ mentions.

http://incf.org/programs/atlasing/projects/waxholm-space

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 1st, 2023. Coordinate based reference space for the mapping and registration of neuroanatomical data. Users can download image volumes representing the canonical Waxholm Space (WHS) adult C57BL/6J mouse brain, which include T1-, T2*-, and T2-Weighted MR volumes (generated at the Duke Center for In-Vivo Microscopy), Nissl-stained optical histology (acquired at Drexel University), and a volume of labels. All volumes are represented at 21.5μ isotropic resolution. Datasets are provided as gzipped NIFTI files.

Proper citation: Waxholm Space (RRID:SCR_001592) Copy   


  • RRID:SCR_001757

    This resource has 10000+ mentions.

Issue

http://www.nitrc.org/projects/plink

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

Proper citation: PLINK (RRID:SCR_001757) Copy   


https://www.nitrc.org/projects/nidag

An international working group dedicated to improving access to neuroimaging results in a free and open-access manner. It seeks to establish a universal coordinate database, including both past papers and future studies. Their current project involves the creation of a comprehensive database of neuroimaging results searchable based on standardized coordinates. Once complete, this will allow anyone to find all of the articles that report a coordinate, or set of coordinates, easily and without cost. Eventually, they hope to expand this database to include not only coordinates, but statistical parametric maps as well. Formation of such a database will increase the likelihood of relevant papers being found and cited, and also be a very useful tool for those interested in meta-analysis, and hopefully clarify structure-function relationships. They are interested in hearing from people who might be willing to contribute to their projects, particularly those with programming experience. The number of published neuroimaging studies is increasing rapidly and it is not feasible to read them all. If a computer database could store key information from published fMRI papers and make that information easier to search or share, this would have substantial benefits for the neuroimaging community. Projects like AMAT, Brainmap, Brede and SumsDB have started to tackle this problem. NIDAG wants to formalize and improve these databases so that they meet the needs of the neuroimaging community. Formal meta-analysis of published data is a valuable way to assess the consistency and reliability of experimental results. A database of neuroimaging results would facilitate meta-analyses, in conjunction with tools like GingerALE and Multi-level Kernel Density Analysis.

Proper citation: NIDAG: Neuroimaging Data Access Group (RRID:SCR_001674) Copy   


  • RRID:SCR_001847

    This resource has 10000+ mentions.

http://surfer.nmr.mgh.harvard.edu/

Open source software suite for processing and analyzing human brain MRI images. Used for reconstruction of brain cortical surface from structural MRI data, and overlay of functional MRI data onto reconstructed surface. Contains automatic structural imaging stream for processing cross sectional and longitudinal data. Provides anatomical analysis tools, including: representation of cortical surface between white and gray matter, representation of the pial surface, segmentation of white matter from rest of brain, skull stripping, B1 bias field correction, nonlinear registration of cortical surface of individual with stereotaxic atlas, labeling of regions of cortical surface, statistical analysis of group morphometry differences, and labeling of subcortical brain structures.Operating System: Linux, macOS.

Proper citation: FreeSurfer (RRID:SCR_001847) Copy   


  • RRID:SCR_001808

    This resource has 10+ mentions.

http://www.nesys.uio.no/Atlas3D/

A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.

Proper citation: Atlas3D (RRID:SCR_001808) Copy   


  • RRID:SCR_002249

    This resource has 10+ mentions.

http://www.thevirtualbrain.org/

Simulation software for modeling the entire human brain by combining structural and functional data from empirical neuroimaging data. It can generate local field potentials, EEG, MEG and fMRI BOLD data based on neural mass models. The user can also modify the model parameters to match clinical conditions from focal lesions or degenerative disorders.

Proper citation: Virtual brain (RRID:SCR_002249) Copy   


  • RRID:SCR_002166

    This resource has 10+ mentions.

http://www.nitrc.org/projects/voxbo

Software package for brain image manipulation and analysis, focusing on fMRI and lesion analysis. VoxBo can be used independently or in conjunction with other packages. It provides GLM-based statistical tools, an architecture for interoperability with other tools (they encourage users to incorporate SPM and FSL into their processing pipelines), an automation system, a system for parallel distributed computing, numerous stand-alone tools, decent wiki-based documentation, and lots more.

Proper citation: VoxBo (RRID:SCR_002166) Copy   


http://www.nitrc.org/projects/miva/

Software package that is a powerful graphical interface that displays, segments, aligns, manipulates, and blends image (pixel) and geometry (real-world coordinates) data simultaneously. Several applications are directly built into MIVA. Registration modes include interactive affine transformations. Fiducial registration tools facilitate rapid alignments for inter-modality volumes. Interactive Region of Interst (ROI) and Volume-of-Interest (VOI) tools exist to segment medical images. Virtually unique to MIVA are its 3D geometry tools and their compatibility with pixel based medical images. A full 3D interactive rat brain atlas is in an fMRI module which walks one through the necessary steps of fMRI. A multiple material surface routine takes segmented medical slices and creates 3D triangulated surfaces that align along all region boarders without overlap or gaps. These surfaces are the direct input into the MIVA tetrahedral mesh generator.

Proper citation: Medical Image Visualization and Analysis (RRID:SCR_002315) Copy   


  • RRID:SCR_002318

    This resource has 1+ mentions.

http://www.nitrc.org/projects/mriwatcher/

This simple visualization tool allows to load several images at the same time. The cursor across all windows are coupled and you can move/zoom on all the images at the same time. Very useful for quality control, image comparison.

Proper citation: MriWatcher (RRID:SCR_002318) Copy   


http://www.nitrc.org/projects/mgdm/

An efficient level set framework for multi-object segmentation. Its representation inherently prevents overlaps and gaps and it readily preserves object topology and object relationships. MGDM is efficient, storing only a fixed number of functions for any number of objects, and therefore scales well to segmentation problems with many classes and large images. It's representation also avoids some instabilities in other multi-class level set methods. MGDM is cross-platform; MATLAB wrappers, Java source and API are provided, with MIPAV plugins forthcoming.

Proper citation: MGDM: Multi Geometric Deformable Model (RRID:SCR_002311) Copy   


  • RRID:SCR_002340

    This resource has 10+ mentions.

https://github.com/BRAINSia/BRAINSTools/tree/master/BRAINSFit

A program for registering images with with mutual information based metric. Several registration options are given for 3,6, 9,12,16 parameter (i.e. translate, rigid, scale, scale/skew, full affine) based constraints for the registration. The program uses the Slicer3 execution model framework to define the command line arguments and can be fully integrated with Slicer3 using the module discovery capabilities of Slicer3

Proper citation: BRAINSFit (RRID:SCR_002340) Copy   


  • RRID:SCR_004951

    This resource has 1+ mentions.

http://brainliner.jp

Portal and tools for sharing and editing neurophysiological and behavioral data for brain-machine interface research. Users can search for existing data or login with their Google, Facebook, or Twitter account and upload new data. Their main focus is on supporting brain-machine interface research, so we encourage users to not just provide recordings of brain activity data, but also information about stimuli, etc., so that statistical relationships can be found between stimuli and/or subject behavior and brain activity. The Matlab tools are for writing, reading, and converting Neuroshare files, the common file format. A free, open source desktop tool for editing neurophysiological data for brain-machine interface research is also available: https://github.com/ATR-DNI/BrainLiner Since data formats aren''''t standardized between programs and researchers, data and analysis programs for data cannot be easily shared. Neuroshare was selected as the common file format. Neuroshare can contain several types of neurophysiological data because of its high flexibility, including analog time-series data and neuronal spike timing. Some applications have plug-ins or libraries available that can read Neuroshare format files, thus making Neuroshare somewhat readily usable. Neuroshare can contain several types of neurophysiological data, but there were no easy tools to convert data into the Neuroshare format, so they made and are providing a Neuroshare Converter Library and Simple Converter using the library. In future work they will make and provide many more useful tools for data sharing. Shared experiments include: EMG signal, Takemiya Exp, Reconstruct (Visual image reconstruction from human brain activity using a combination of multi-scale local image decoders), SPIKE data, Speech Imagery Dataset (Single-trial classification of vowel speech imagery using common spatial patterns), Functional Multineuron Calcium Imaging (fMCI), Rock-paper-scissors (The data was obtained from subject while he make finger-form of rock/paper/scissors). They also have a page at https://www.facebook.com/brainliner where you can contact us

Proper citation: BrainLiner (RRID:SCR_004951) Copy   


  • RRID:SCR_005031

    This resource has 100+ mentions.

http://openneuro.org

Open platform for analyzing and sharing neuroimaging data from human brain imaging research studies. Brain Imaging Data Structure ( BIDS) compliant database. Formerly known as OpenfMRI. Data archives to hold magnetic resonance imaging data. Platform for sharing MRI, MEG, EEG, iEEG, and ECoG data.

Proper citation: OpenNeuro (RRID:SCR_005031) Copy   


  • RRID:SCR_005402

    This resource has 10+ mentions.

http://neurolex.org/wiki/Main_Page

A freely editable semantic wiki for community-based curation of the terms used in Neuroscience. Entries are curated and eventually incorporated into the formal NIFSTD ontology. NeuroLex also includes a Resource branch for community members to freely add neuroscience relevant resources that do not become part of NIFSTD ontology but rather make up the NIF Registry. As part of the NIF, we provide a simple search interface to many different sources of neuroscience information and data. To make this search more effective, we are constructing ontologies to help organize neuroscience concepts into category hierarchies, e.g., neuron is a cell. These categories provide the means to perform more effective searches and also to organize and understand the information that is returned. But an important adjunct to this activity is to clearly define all of the terms that we use to describe our data, e.g., anatomical terms, techniques, organism names. Because wikis provide an easy interface for communities to contribute their knowledge, we started the NeuroLex.

Proper citation: NeuroLex (RRID:SCR_005402) Copy   


http://fcon_1000.projects.nitrc.org/

Collection of resting state fMRI (R-fMRI) datasets from sites around world. It demonstrates open sharing of R-fMRI data and aims to emphasize aggregation and sharing of well-phenotyped datasets.

Proper citation: 1000 Functional Connectomes Project (RRID:SCR_005361) Copy   


http://www.cma.mgh.harvard.edu/iatr/

A centrally available listing of all image analysis tools that are available to the neuroscience community in order to facilitate the development, identification, and sharing of tools. It is hoped that this helps the tool developers to get their tools to a larger user community and to reduce redundancy (or at least utilize tool redundancy to facilitate optimal tool design) in tool development. This also helps tool users in identification of the existing tools for specific problems as they arise. The registry is designed to be self-moderated. This means that all tool entries are owned by some responsible party who enters the tool information, and keeps it up to date via the Web.

Proper citation: Internet Analysis Tools Registry (RRID:SCR_005638) Copy   


  • RRID:SCR_005286

http://www.biological-networks.org/pubs/suppl/sinomo/

Analysis-tool which identifies singular node motifs in a network. Network nodes can be described by node-motifs. It is an improvement to the method described in Costa et al. (2009).

Proper citation: SINOMO (RRID:SCR_005286) Copy   


  • RRID:SCR_005358

    This resource has 10+ mentions.

http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html#

A grassroots initiative dedicated to accelerating the scientific community''''s understanding of the neural basis of ADHD through the implementation of open data-sharing and discovery-based science. They believe that a community-wide effort focused on advancing functional and structural imaging examinations of the developing brain will accelerate the rate at which neuroscience can inform clinical practice. The ADHD-200 Global Competition invited participants to develop diagnostic classification tools for ADHD diagnosis based on functional and structural magnetic resonance imaging (MRI) of the brain. Applying their tools, participants provided diagnostic labels for previously unlabeled datasets. The competition assessed diagnostic accuracy of each submission and invited research papers describing novel, neuroscientific ideas related to ADHD diagnosis. Twenty-one international teams, from a mix of disciplines, including statistics, mathematics, and computer science, submitted diagnostic labels, with some trying their hand at imaging analysis and psychiatric diagnosis for the first time. The data for the competition was provided by the ADHD-200 Consortium. Consortium members from institutions around the world provided de-identified, HIPAA compliant imaging datasets from almost 800 children with and without ADHD. A phenotypic file including all of the test set subjects and their diagnostic codes can be downloaded. Winner is presented. The ADHD-200 consortium included: * Brown University, Providence, RI, USA (Brown) * The Kennedy Krieger Institute, Baltimore, MD, USA (KKI) * The Donders Institute, Nijmegen, The Netherlands (NeuroImage) * New York University Medical Center, New York, NY, USA (NYU) * Oregon Health and Science University, Portland, OR, USA (OHSU) * Peking University, Beijing, P.R.China (Peking 1-3) * The University of Pittsburgh, Pittsburgh, PA, USA (Pittsburgh) * Washington University in St. Louis, St. Louis, MO, USA (WashU)

Proper citation: ADHD-200 Sample (RRID:SCR_005358) Copy   


  • RRID:SCR_005513

    This resource has 10+ mentions.

http://cbrain.mcgill.ca/

A flexible software platform for distributed processing, analysis, exchange and visualization of brain imaging data. The expected result is a middleware platform that will render the processing environment (hardware, operating systems, storage servers, etc...) transparent to a remote user. Interaction with a standard web browser allows application of complex algorithm pipelines to large datasets stored at remote locations using a mixture of network available resources such as small clusters, neuroimaging tools and databases as well as Compute Canada's High Performance Computing Centers (HPC). Though the focus of CBRAIN is providing tools for use by brain imaging researchers, the platform is generalizable to other imaging domains, such as radiology, surgical planning and heart imaging, with profound consequences for Canadian medical research. CBRAIN expanded its concept to include international partners in the US, Germany and Korea. As of December 2010, GBRAIN has made significant progress with the original three partners and has developed new partners in Singapore, China, India, and Latin America. CBRAIN is currently deployed on 6 Compute Canada HPC clusters, one German HPC cluster and 3 clusters local to McGill University Campus, totaling more than 80,000 potential CPU cores.

Proper citation: CBRAIN (RRID:SCR_005513) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X