Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 8 showing 141 ~ 160 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection

https://www.wtccc.org.uk/

Consortium of 50 research groups across the UK to harness the power of newly-available genotyping technologies to improve our understanding of the aetiological basis of several major causes of global disease. The consortium has gathered genotype data for up to 500,000 sites of genome sequence variation (single nucleotide polymorphisms or SNPs) in samples ascertained for the disease phenotypes. Analysis of the genome-wide association data generated has lead to the identification of many SNPs and genes showing evidence of association with disease susceptibility, some of which will be followed up in future studies. In addition, the Consortium has gained important insights into the technical, analytical, methodological and biological aspects of genome-wide association analysis. The core of the study comprised an analysis of 2,000 samples from each of seven diseases (type 1 diabetes, type 2 diabetes, coronary heart disease, hypertension, bipolar disorder, rheumatoid arthritis and Crohn's disease). For each disease, the case samples have been ascertained from sites widely distributed across Great Britain, allowing us to obtain considerable efficiencies by comparing each of these case populations to a common set of 3,000 nationally-ascertained controls also from England, Scotland and Wales. These controls come from two sources: 1,500 are representative samples from the 1958 British Birth Cohort and 1,500 are blood donors recruited by the three national UK Blood Services. One of the questions that the WTCCC study has addressed relates to the relative merits of these alternative strategies for the generation of representative population cohorts. Genotyping for this main Case Control study was conducted by Affymetrix using the (commercial) Affymetrix 500K chip. As part of this study a total of 17,000 samples were typed for 500,000 SNPs. There are two additional components to the study. First, the WTCCC award is part-funding a study of host resistance to infectious diseases in African populations. The same approach has been used to type 2,000 cases of tuberculosis (TB) and 2,000 cases of malaria, as well as 2,000 shared controls. As well as addressing diseases of major global significance, and extending WTCCC coverage into the area of infectious disease, the inclusion of samples of African origin has obvious benefits with respect to methodological aspects of genome-wide association analysis. Second, the WTCCC has, for four additional diseases (autoimmune thyroid disease, breast cancer, ankylosing spondylitis, multiple sclerosis), completed an analysis of 15,000 SNPs designed to represent a large proportion of the known non-synonymous coding SNPs across the genome. This analysis has been performed at the WTSI using a custom Infinium chip (Illumina). Data release The genotypic data of the control samples (1958 British Birth Cohort and UK Blood Service) and from seven diseases analyzed in the main study are now available to qualified researchers. Summary genotype statistics for these collections are available directly from the website. Access to the individual-level genotype data and summary genotype statistics is by application to the Consortium Data Access Committee (CDAC) and approval subject to a Data Access Agreement. WTCCC2: A further round of GWA studies were funded in April 2008. These include 15 WTCCC-collaborative studies and 12 independent studies be supported totaling approximately 120,000 samples. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC2 will perform genome-wide association studies in 13 disease conditions: Ankylosing spondylitis, Barrett's oesophagus and oesophageal adenocarcinoma, glaucoma, ischaemic stroke, multiple sclerosis, pre-eclampsia, Parkinson's disease, psychosis endophenotypes, psoriasis, schizophrenia, ulcerative colitis and visceral leishmaniasis. WTCCC2 will also investigate the genetics of reading and mathematics abilities in children and the pharmacogenomics of statin response. Over 60,000 samples will be analyzed using either the Affymetrix v6.0 chip or the Illumina 660K chip. The WTCCC2 will also genotype 3,000 controls each from the 1958 British Birth cohort and the UK Blood Service control group, and the 6,000 controls will be genotyped on both the Affymetrix v6.0 and Illumina 1.2M chips. WTCCC3: The Wellcome Trust has provided support for a further round of GWA studies in January 2009. These include 5 WTCCC-collaborative studies to be carried out in WTCCC3 and 5 independent studies, across a range of diseases. Many of the studies represent major international collaborative networks that have together assembled large sample collections. WTCCC3 will perform genome-wide association studies in the following 4 disease conditions: primary biliary cirrhosis, anorexia nervosa, pre-eclampsia in UK subjects, and the interactions between donor and recipient DNA related to early and late renal transplant dysfunction. The WTCCC3 will also carry out a pilot in a study of the genetics of host control of HIV-1 infection. Over 40,000 samples will be analyzed using the Illumina 660K chip. The WTCCC3 will utilize the 6,000 control genotypes generated by the WTCCC2.

Proper citation: Wellcome Trust Case Control Consortium (RRID:SCR_001973) Copy   


http://www.doe-mbi.ucla.edu/

The UCLA-DOE Institute for Genomics and Proteomics carries out research in bioenergy, structural biology, genomics and proteomics, consistent with the research mission of the United States Department of Energy. Major interests of the 12 Principal Investigators and 9 Associate Members include systems approaches to organisms, structural biology, bioinformatics, and bioenergetic systems. The Institute sponsors 5 Core Technology Centers, for X-ray and NMR structural determination, bioinformatics and computation, protein expression and purification, and biochemical instrumentation. Services offered by this Institute: - Databases: * DIP (The Database of Interacting Proteins): The DIPTM database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. * ProLinks Database of Functional Linkages: The Prolinks database is a collection of inference methods used to predict functional linkages between proteins. These methods include the Phylogenetic Profile method which uses the presence and absence of proteins across multiple genomes to detect functional linkages; the Gene Cluster method, which uses genome proximity to predict functional linkage; Rosetta Stone, which uses a gene fusion event in a second organism to infer functional relatedness; and the Gene Neighbor method, which uses both gene proximity and phylogenetic distribution to infer linkage. - Data-to-Structure Servers: * SAVEs Structure Verification Server * Merohedral Twinning Test Server * SER Surface Entropy Reduction Server * VERIFY3D Structure Verification Server * ERRAT Structure Verification Server - Structure-to-Function Servers: * ProKnow Protein Functionator * Hot Patch Functional Site Locator

Proper citation: University of California at Los Angeles - Department of Energy Institute for Genomics and Proteomics (RRID:SCR_001921) Copy   


  • RRID:SCR_001918

https://code.google.com/p/tbrowse/

Software providing a HTML5/javascript based browser for visualizing RNA-seq results in the familiar track layout of common genome browser. But given the quantitative nature of RNA-seq data, in addition to visualizing sequence coverage, the browser quantitates transcript abundance across regions of interest. The HTML5 functionality is made of use to render all the tracks using the canvas drawing element. This greatly reduces the load on servers and allows for rich interactive graphics without the need for third-party plugins. Furthermore, this framework completely segregates data from visualization, making development much easier. The browser is designed to run on all modern browsers: Firefox, Safari, Chrome, Opera and Internet Explorer (though not recommended).

Proper citation: tbrowse (RRID:SCR_001918) Copy   


  • RRID:SCR_002148

    This resource has 100+ mentions.

http://compbio.dfci.harvard.edu/tgi/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.The goal of The Gene Index Project is to use the available Expressed Sequence Transcript (EST) and gene sequences, along with the reference genomes wherever available, to provide an inventory of likely genes and their variants and to annotate these with information regarding the functional roles played by these genes and their products. The promise of genome projects has been a complete catalog of genes in a wide range of organisms. While genome projects have been successful in providing reference genome sequences, the problem of finding genes and their variants in genomic sequence remains an ongoing challenge. TGI has created an inventory that contains genes and their variants together with description. In addition, this resource is attempting to use these catalogs to find links between genes and pathways in different species and to provide lists of features within completed genomes that can aid in the understanding of how gene expression is regulated. DATABASES *Eukaryotic Gene Orthologues (formerly known as TOGA - TIGR Orthologous Gene Alignment): Eukaryotic Gene Orthologues (EGO) at DFGI are generated by pair-wise comparison between the Tentative Consensus (TC) sequences that comprise the Dana Farber Gene Indices from individual organisms. The reciprocal pairs of the best match were clustered into individual groups and multiple sequence alignments were displayed for each group. *GeneChip Oncology Database (GCOD):Cancer gene expression database is a collection of publicly available microarray expression data on Affymetrix GeneChip Arrays related to human cancers. Currently only datasets with available raw data (Affymetrix .CEL files) are processed. All processed datasets were subjected to extensive manual curation, uniform processing and consistent quality control. You can browse the experiments in our collection, perform statistical analysis, and download processed data; or to search gene expression profiles using Entrez gene symbol, Unigene ID, or Affymetrix probeset ID. *Gene Indices: As of July 1, 2008, there are 111 publicly available gene indices. They are separated into 4 categories for better organization and easier access. Animal: 41, Plant: 45, Protist: 15, Fungal: 10 *Genomic Maps: Human, mouse, rat, chicken, drosophila melanogaster, zebrafish, mosquito, caenorhabditis elegans, Arabidopsis thaliana, rice, yeast, fission yeast Dana-Farber Cancer Institute (DFCI) Gene Indices Software Tools: *TGI Clustering tools (TGICL): a software system for fast clustering of large EST datasets. *GICL: this package contains the scripts and all the necessary pre-compiled binaries for 32bit Linux systems. *clview: an assembly file viewer. *SeqClean:a script for automated trimming and validation of ESTs or other DNA sequences by screening for various contaminants, low quality and low-complexity sequences. *cdbfasta/cdbyank: fast indexing/retrieval of fasta records from flat file databases. *DAS/XML Genomic Viewer The Genomic viewer borrows modules from http://www.biodas.org (lstein (at) cshl.org) & http://webreference.com.

Proper citation: Gene Index Project (RRID:SCR_002148) Copy   


http://mips.gsf.de/genre/proj/yeast/index.jsp

The MIPS Comprehensive Yeast Genome Database (CYGD) aims to present information on the molecular structure and functional network of the entirely sequenced, well-studied model eukaryote, the budding yeast Saccharomyces cerevisiae. In addition, the data of various projects on related yeasts are used for comparative analysis.

Proper citation: CYGD - Comprehensive Yeast Genome Database (RRID:SCR_002289) Copy   


http://microbes.ucsc.edu/cgi-bin/hgGateway?db=neisMeni_MC58_1

Portal contains detailed information for Neisseria meningitidis MC58. Information include DNA molecule summary, primary annotation summary, and taxonomy. It is a tool that allows the researcher to access all of the bacterial genome sequences completed to date. Users may access information on all of the bacterial genomes or any subset of them. Information in the website about its DNA molecule includes: total number of DNA molecules, total size of all DNA molecules, number of primary annotation coding bases, and number of G + C bases. Its primary annotation summary include: total genes, protein coding genes, tRNA genes, and rRNA genes. Sponsors: The CMR was previously funded by two grants, one from the U.S. Department of Energy (DOE) and one from the National Science Foundation (NSF). It is currently partially funded by a Microbial Sequence Center (MSC) grant from the National Institute of Allergy and Infectious Diseases (NIAID)

Proper citation: Neisseria meningitidis MC58 Genome Page (RRID:SCR_002200) Copy   


  • RRID:SCR_002279

    This resource has 50+ mentions.

http://insulatordb.uthsc.edu/

A comprehensive collection of experimentally determined and computationally predicted CCCTC-binding factor (CTCF) binding sites (CTCFBS) from the literature. The database is designed to facilitate the studies on insulators and their roles in demarcating functional genomic domains. The CTCFBS Prediction Tool allows users to scan sequences for the single best match to CTCF position weight matrices. Currently (March 2014), the database contains almost 15 million experimentally determined CTCF binding sites across several species. CTCF binding sites were collected from published papers containing CTCF binding sites identified using ChIPSeq or similar methods, data from the ENCODE project, and a set of approximately 100 manually curated binding sites identified by low-throughput experiments. Users can browse insulator sequence features, function annotations, genomic contexts including histone methylation profiles, flanking gene expression patterns and orthologous regions in other mammalian genomes. Users can also retrieve data by text search, sequence search and genomic range search.

Proper citation: CTCFBSDB (RRID:SCR_002279) Copy   


http://www.ncbi.nlm.nih.gov/HTGS/

Database of high-throughput genome sequences from large-scale genome sequencing centers, including unfinished and finished sequences. It was created to accommodate a growing need to make unfinished genomic sequence data rapidly available to the scientific community in a coordinated effort among the International Nucleotide Sequence databases, DDBJ, EMBL, and GenBank. Sequences are prepared for submission by using NCBI's software tools Sequin or tbl2asn. Each center has an FTP directory into which new or updated sequence files are placed. Sequence data in this division are available for BLAST homology searches against either the htgs database or the month database, which includes all new submissions for the prior month. Unfinished HTG sequences containing contigs greater than 2 kb are assigned an accession number and deposited in the HTG division. A typical HTG record might consist of all the first-pass sequence data generated from a single cosmid, BAC, YAC, or P1 clone, which together make up more than 2 kb and contain one or more gaps. A single accession number is assigned to this collection of sequences, and each record includes a clear indication of the status (phase 1 or 2) plus a prominent warning that the sequence data are unfinished and may contain errors. The accession number does not change as sequence records are updated; only the most recent version of a HTG record remains in GenBank.

Proper citation: High Throughput Genomic Sequences Division (RRID:SCR_002150) Copy   


http://www.ark-genomics.org/

Portal for studies of genome structure and genetic variation, gene expression and gene function. Provides services including DNA sequencing of model and non-model genomes using both Next Generation and Sanger sequencing , Gene expression analysis using both microarrays and Next Generation Sequencing, High throughput genotyping of SNP and copy number variants, Data collection and analysis supported in-house high performance computing facilities and expertise, Extensive EST clone collections for a number of animal species, all of commercially available microarray tools from Affymetrix, Illumina, Agilent and Nimblegen, Parentage testing using microsatellites and smaller SNP panels. ARK-Genomics has developed network of researchers whom they support through each stage of their genomics research, from grant application, experimental design and technology selection, performing wet laboratory protocols, through to analysis of data often in conjunction with commercial partners.

Proper citation: ARK-Genomics: Centre for Functional Genomics (RRID:SCR_002214) Copy   


  • RRID:SCR_002172

    This resource has 100+ mentions.

http://www.genoscope.cns.fr/spip/spip.php?lang=en

French national sequencing center with the following resources: * Sequencing ** Genoscope Projects * Environmental genomics ** Microbial diversity in wastewater ** Metabolic genomics * Bioinformatics ** Atelier for comparative genomics ** Computational Systems Biology ** Servers resources *** GGB for Generic Genome Browser: graphic interface for various databases (sequence, annotation, syntenies...) for a given organism. *** MaGe for Magnifying Microbial Genomes: annotation system for microbial genomes.

Proper citation: Genoscope (RRID:SCR_002172) Copy   


  • RRID:SCR_002359

    This resource has 500+ mentions.

http://www.ddbj.nig.ac.jp

Maintains and provides archival, retrieval and analytical resources for biological information. Central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: DDBJ Omics Archive and BioProject. DOR is archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides organizational framework to access metadata about research projects and data from projects that are deposited into different databases.

Proper citation: DNA DataBank of Japan (DDBJ) (RRID:SCR_002359) Copy   


  • RRID:SCR_002474

    This resource has 500+ mentions.

http://www.ncbi.nlm.nih.gov/genome

Database that organizes information on genomes including sequences, maps, chromosomes, assemblies, and annotations in six major organism groups: Archaea, Bacteria, Eukaryotes, Viruses, Viroids, and Plasmids. Genomes of over 1,200 organisms can be found in this database, representing both completely sequenced organisms and those for which sequencing is in progress. Users can browse by organism, and view genome maps and protein clusters. Links to other prokaryotic and archaeal genome projects, as well as BLAST tools and access to the rest of the NCBI online resources are available.

Proper citation: NCBI Genome (RRID:SCR_002474) Copy   


  • RRID:SCR_001630

    This resource has 1+ mentions.

https://github.com/Ensembl

Public database that stores areas of genome that differ between individual genomes (variants) and, where available, associated disease and phenotype information. Different types of variants for several species: single nucleotide polymorphisms (SNPs), short nucleotide insertions and/or deletions, and longer variants classified as structural variants (including CNVs). Effects of variants on the Ensembl transcripts and regulatory features for each species are predicted. You can run same analysis on your own data using Variant Effect Predictor. These data are integrated with other data sources in Ensembl, and can be accessed using the API or website. For several different species in Ensembl, they import variation data (SNPs, CNVs, allele frequencies, genotypes, etc) from a variety of sources (e.g. dbSNP). Imported variants and alleles are subjected to quality control process to flag suspect data. In human, they calculate linkage disequilibrium for each variant, by population.

Proper citation: Ensembl Variation (RRID:SCR_001630) Copy   


  • RRID:SCR_001598

    This resource has 10000+ mentions.

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch

Web application to search nucleotide databases using a nucleotide query. Algorithms: blastn, megablast, discontiguous megablast.

Proper citation: BLASTN (RRID:SCR_001598) Copy   


  • RRID:SCR_001623

    This resource has 10+ mentions.

http://ancora.genereg.net/

Web resource that provides data and tools for exploring genomic organization of highly conserved noncoding elements (HCNEs) for multiple genomes. It includes a genome browser that shows HCNE locations and features novel HCNE density plots as a powerful tool to discover developmental regulatory genes and distinguish their regulatory elements and domains. They identify HCNEs as non-exonic regions of high similarity between genome sequences from distantly related organisms, such as human and fish, and provide tools for studying the distribution of HCNEs along chromosomes. Major peaks of HCNE density along chromosomes most often coincide with developmental regulatory genes. Their aim with this site is to aid discovery of developmental regulatory genes, their regulatory domains and their fundamental regulatory elements.

Proper citation: Ancora (RRID:SCR_001623) Copy   


  • RRID:SCR_001613

    This resource has 10+ mentions.

https://phenogen.org

Website for analyzing microarray data. Software toolbox for storing, analyzing and integrating microarray data and related genotype and phenotype data. The site is particularly suited for combining QTL and microarray data to search for candidate genes contributing to complex traits. In addition, the site allows, if desired by the investigators, sharing of the data. Investigators can conduct in-silico microarray experiments using their own and/or shared data. There are five major sections of the site: Genome/Transcriptome Data Browser, Microarray Analysis Tools, Gene List Analysis Tools, QTL Tools, and Downloads. The genome/transcriptome data browser combines a genome browser with all the microarray, RNA-Seq, and Genomic Sequencing data. This provides an effective platform to view all of this data side by side. Source code is available on GitHub.

Proper citation: PhenoGen Informatics (RRID:SCR_001613) Copy   


http://www.norcomm.org/index.htm

Large-scale research initiative focused on developing and distributing a library of mouse embryonic stem (ES) cell lines carrying single gene trapped or targeted mutations across the mouse genome. NorCOMM's large and growing archive of ES cells is publicly available on a cost-recovery basis from the Canadian Mouse Mutant Repository. As an international public resource, access to clones is unrestricted and nonexclusive. Through NorCOMM's affiliation with the Canadian Mouse Consortium (CMC), NorCOMM also provides clients with a single point of access to regional mouse derivation, phenotyping, genetic and archiving services across Canada. These value-added services can help your company harness NorCOMM's resources for drug discovery, target discovery and preclinical validation.

Proper citation: North American Conditional Mouse Mutagenesis Project (RRID:SCR_001614) Copy   


  • RRID:SCR_001480

    This resource has 10+ mentions.

http://globin.cse.psu.edu/

Data and tools for studying the function of DNA sequences, with an emphasis on those involved in the production of hemoglobin. It includes information about naturally-occurring human hemoglobin mutations and their effects, experimental data related to the regulation of the beta-like globin gene cluster, and software tools for comparing sequences with one another to discover regions that are likely to play significant roles.

Proper citation: Globin Gene Server (RRID:SCR_001480) Copy   


  • RRID:SCR_001748

    This resource has 50+ mentions.

http://www.animalgenome.org/cgi-bin/QTLdb/index

Database of trait mapping data, i.e. QTL (phenotype / expression, eQTL), candidate gene and association data (GWAS) and copy number variations (CNV) mapped to livestock animal genomes, to facilitate locating and comparing discoveries within and between species. New data and database tools are continually developed to align various trait mapping data to map-based genome features, such as annotated genes. QTLdb is open to house QTL/association date from other animal species where feasible. Most scientific journals require that any original QTL/association data be deposited into public databases before paper may be accepted for publication. User curator accounts are provided for direct data deposit. Users can download QTLdb data from each species or individual chromosome.

Proper citation: Animal QTLdb (RRID:SCR_001748) Copy   


  • RRID:SCR_001735

    This resource has 1+ mentions.

https://www.hgsc.bcm.edu/content/sea-urchin-genome-project

Provides informationa about Genome of California Purple Sea Urchin, one species (Strongylocentrotus purpuratus) of which has been sequenced and annotated by Sea Urchin Genome Sequencing Consortium led by HGSC. Reports sequence and analysis of genome of sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology.

Proper citation: Sea Urchin Genome Project (RRID:SCR_001735) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X