Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.sfn.org/index.aspx?pagename=brainfacts
Brain Facts is a 74-page primer on the brain and nervous system, published by SfN. Designed for a lay audience as an introduction to neuroscience, Brain Facts is also a valuable educational resource used by high school teachers and students who participate in Brain Awareness Week. The 2008 edition updates all sections and includes new information on brain development, learning and memory, language, neurological and psychiatric illnesses, potential therapies, and more. Download the full book (PDF) or download individual sections. All downloads are PDFs. Educators, request a copy of the Brain Facts book (paperback or CD) - contact BAW@SfN.org.
Proper citation: Brain Facts (RRID:SCR_008788) Copy
http://www.ohsu.edu/xd/research/centers-institutes/neurology/alzheimers/
An aging and Alzheimer's disease research center that conducts studies of treatments, technologies for patient support, genetics, neuroimaging, and pathology. The Center's clinical research focuses on understanding differing rates of progression and cognitive decline as compared to optimal cognitive health in the elderly and are currently studying methods of gauging the progression of Alzheimer’s disease through research in genetics, neuroimaging, and cerebrospinal fluid biomarkers. Clinical trials performed at the Center include drugs targeted to ameliorate the symptoms of memory failure and slow the progression of disease.
Proper citation: OHSU Layton Aging and Alzheimer's Disease Center (RRID:SCR_008821) Copy
http://www.med.upenn.edu/cndr/biosamples-brainbank.html
A brain and tissue bank that contains human brain samples from patients with Alzheimer's disease (AD), Parkinson's disease (PD) and other related neurodegenerative dementias and movement disorders. This brain bank serves as a resource for scientists and researchers, providing access to tissue samples for further research. While priority is given to University of Pennsylvania researchers, this bank will provide requests to researchers not associated with the University of Pennsylvania. This tissue bank accepts donations from those seeing a University of Pennsylvania physician or collaborator.
Proper citation: University of Pennslyvania Brain Bank (RRID:SCR_008820) Copy
http://www.mcknight.org/neuroscience/
An endowment that offers funding for memory research. The McKnight Endowment Fund for Neuroscience is an independent charitable organization established by The McKnight Foundation to carry out the wishes of its founder, William L. McKnight (1887-1979). Currently, the Endowment Fund for Neuroscience administers four awards which support young and established neuroscientists and encourage interdisciplinary collaboration: * Memory and Cognitive Disorders Awards * Neuroscience of Brain Disorders Awards * Scholar Awards * Technological Innovations in Neuroscience Awards Mr. McKnight, who led the 3M company for three decades, had a personal interest in memory and its diseases. He chose to set aside part of his legacy to bring hope to those suffering from brain injury or disease and cognitive impairment.
Proper citation: McKnight Endowment Fund for Neuroscience (RRID:SCR_008771) Copy
This comprehensive free collection of multimedia resources and inquiry-based activities tied to the National Science Education Standards help teachers and students learn about the structure, function and cognitive aspects of the human brain. The packet includes a teacher's manual, student manual, DVD of videos, and a CDROM of accompanying materials.
Proper citation: Brain's Inner Workings: Activities for Grades 9 through 12 (RRID:SCR_008842) Copy
Voluntary, non-profit organization dedicated to collecting and disseminating statistical data. Resource for gathering and disseminating epidemiologic data on all primary benign and malignant brain and other CNS tumors.
Proper citation: Central Brain Tumor Registry of the United States (RRID:SCR_008748) Copy
The WEB ATLAS contains photographs of dissected brains showing important structures. The diagrams folder contains drawings showing functionally important parts of the brain as well as drawings of dissections adapted from C.G. Smith. We are particularly pleased to make Nan Cheney''s medical illustrations of the brain and the head available. The STROKE MODEL portion of the website has syndromes associated with strokes of different vessels of the brain as well as extensive diagrams and tables about the vessels of the brain. The 3D RECONSTRUCTIONS featured on this website were made from MRI scans through the brain - where indicated the source material was from the NIH Visible Human Project. The website will also contain material important for the neuroanatomy labs for med students at UBC. Weekly quizzes will help you keep up with studying the material, the podcasts will help you review material presented in the labs, and the weekly wikis will help you share information with your peers.
Proper citation: Neuroanatomy at UBC (RRID:SCR_008744) Copy
http://crezoo.crt-dresden.de/crezoo/
Database of helpful set of CreERT2 driver lines expressing in various regions of the developing and adult zebrafish. The lines have been generated via the insertion of a mCherry-T2A-CreERT2 in a gene trap approach or by using promoter fragments driving CreERT2. You can search the list of all transgenic lines or single entries by insertions (gene) or expression patterns (anatomy/region). In most cases the CreERT2 expression profile using in situ hybridization at 24 hpf and 48 hpf is shown, but also additional information (e.g. mCherry or CreERT2 expression at adult stages, transactivation of a Cre-dependent reporter line) is displayed. Currently, not all insertions have been mapped to a genomic location but the database will be regularly updated adding newly generated insertions and mapping information. Your help in improving and broadening the database by giving your opinion or knowledge of expression patterns is highly appreciated.
Proper citation: CreZoo (RRID:SCR_008919) Copy
http://www.blueprintnhpatlas.org/
Atlas of gene expression in the developing rhesus macaque brain. This atlas is a free online resource with a unique set of data and tools aimed to create a developmental neuroanatomical framework for exploring the cellular and molecular architecture of the developing postnatal primate brain with direct relevance for human brain development. The atlas includes: * Microarray ** Microdissection: Fine structure transcriptional profiling across postnatal development for fine nuclear subdivisions of the prefrontal cortex, primary visual cortex, hippocampus, amygdala and ventral striatum ** Macrodissection: Gross structure transcriptional profiling across postnatal development for the same structures * ISH: ** Cellular resolution in situ hybridization image data of five major brain regions during postnatal developmental periods for genes clinically important for a variety of human neurodevelopmental disorders, including prefrontal cortex, primary visual cortex, hippocampus, amygdala and ventral striatum. ** Serial analysis of selected genes across the entire adult brain, focusing on cellular marker genes, genes with cortical area specificity and gene families important to neural function. * ISH Anatomic Search: Detailed gene expression search on the ISH data based on expert annotation * Reference Data: Developmental stage-specific reference series, consisting of magnetic resonance imaging (MRI) and Nissl histology to provide a neuroanatomical context for the gene expression data. These data and tools are designed to provide a valuable public resource for researchers and educators to explore neurodevelopment in non-human primates, and a key evolutionary link between other Web-based gene expression atlases for adult and developing mouse and human brain.
Proper citation: NIH Blueprint NHP Atlas (RRID:SCR_010559) Copy
http://www.mssm.edu/research/programs/manhattan-hiv-brain-bank/
Biorepository of tissues and fluids relevant for the neurologic, neuropsychologic, psychiatric and neuropathologic manifestations of HIV infection, linked to medical records and an on-going clinical trial for research use by the scientific community. The MHBB conducts a longitudinal, observational study that follows a group of HIV-infected individuals who have agreed to be fluid and organ donors for the purposes of AIDS research. They are currently the largest, multidisciplinary neuroAIDS cohort in New York City, the epicenter of the US HIV epidemic. Research participants undergo regular neurologic, neuropsychologic, and psychiatric evaluations, and provide body fluid samples that are linked to clinical information. Upon their demise, study participants become organ donors. This program has supplied clinical information, tissue, and fluid samples to over 70 qualified AIDS researchers across America, Europe and Australia. In fulfilling its resource mission, the MHBB functions as part of the National NeuroAIDS Tissue Consortium (NNTC). MHBB provides a means by which people living with HIV can be engaged in the struggle to improve our knowledge about HIV infection and the damage it causes to the body.
Proper citation: Manhattan HIV Brain Bank (RRID:SCR_010520) Copy
http://brainandsociety.org/the-brain-observatory
Formerly a topical portal studying the brain which collected and imaged 1000 human brains, the Brain Observatory has partnered with the Institute for Brain and Society to build virtual laboratories that will feed directly into the database of images and knowledge created in the context of the Human Brain Library. The Brain Observatory will also host exhibits, conferences, and events aimed at promoting a heightened awareness of brain research and how its results can benefit personal brain fitness and mental health.
Proper citation: Brain Observatory (RRID:SCR_010641) Copy
Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.
Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy
Lab interested in understanding how neuronal circuitries of the brain support its cognitive capacities. Its goal is to provide rational, mechanistic explanations of cognitive functions at a descriptive level. In the lab''s view, the most promising area of cognitive faculties for scientific inquiry is memory, since it is a well-circumscribed term, can be studied in animals and substantial knowledge has accumulated on the molecular mechanisms of synaptic plasticity. Available software: * NeuroScope: NeuroScope can display local field potentials (EEG), neuronal spikes, behavioral events, as well as the position of the animal in the environment. It also features limited editing capabilities. * Klusters: Klusters is a powerful and easy-to-use cluster cutting application designed to help neurophysiologists sort action potentials from multiple neurons on groups of electrodes (e.g., tetrodes or multisite silicon probes). * KlustaKwik: KlustaKwik is a program for automatic cluster analysis, specifically designed to run fast on large data sets. * MATLAB m-files: A selection of MATLAB files developed in the lab., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Buzsaki Lab (RRID:SCR_008020) Copy
http://www.nibb.ac.jp/brish/indexE.html
Database of detailed protocols for single and double in situ hybridization (ISH) method, probes used by Yamamori lab and others useful for studies of brain, and many photos of mammalian (mostly mouse and monkey) brains stained with various gene probes. Also includes a brain atlas of gene expression. Currently, the atlas comprises a series of un-annotated images showing the localization of a particular probe or molecule, e.g., AChE.
Proper citation: BraInSitu: A homepage for molecular neuroanatomy (RRID:SCR_008081) Copy
http://sig.biostr.washington.edu/projects/brain/
The UW Integrated Brain Project is one project within the national Human Brain Project, a national multi-agency effort to develop informatics tools for managing the exploding amount of information that is accumulating about the human brain. The objective of the UW Integrated Brain Project effort is to organize and integrate distributed functional information about the brain around the structural information framework that is the long term goal of our work. This application therefore extends the utility of the Digital Anatomist Project by using it to organize non-structural information. The initial driving neuroscience problem that is being addressed is the management, visualization and analysis of cortical language mapping data. In recent years, advances in imaging technology such as PET and functional MRI have allowed researchers to observe areas of the cortex that are activated when the subject performs language tasks. These advances have greatly accelerated the amount of data available about human language, but have also emphasized the need to organize and integrate the sometimes contradictory sources of data, in order to develop theories about language organization. The hypothesis is that neuroanatomy is the common substrate on which the diverse kinds of data can be integrated. A result of the work done by this project is a set of software tools for generating a 3-D reconstruction of the patient''s own brain from MRI, for mapping functional data to this reconstruction, for normalizing individual anatomy by warping to a canonical brain atlas and by annotating data with terms from an anatomy ontology, for managing individual lab data in local laboratory information systems, for integrating and querying data across separate data management systems, and for visualizing the integrated results. Sponsors: This Human Brain Project research is funded jointly by the National Institute on Deafness and Other Communication Disorders, the National Institute of Mental Health, and the National Institute on Aging.
Proper citation: University of Washington Integrated Brain Project (RRID:SCR_008075) Copy
An interdisciplinary group of scientists and clinicians who study the human brain using a variety of imaging, recording, and computational techniques. Their primary goal is to bridge non-invasive imaging technologies to the underlying neurophysiology of brain neuronal circuits for a better understanding of healthy human brain function, and mechanisms of disruption of this function in diseases such as Alzheimer's, epilepsy and stroke. The other goal of the MMIL is to develop and apply advanced imaging techniques to understanding the human brain and its disorders. In order to ground these methodological developments in their underlying neurobiology, invasive studies in humans and animals involving optical and micro physiological measures are also performed. These methodologies are applied to understanding normal function in sleep, memory and language, development and aging, and diseases such as dementia, epilepsy and autism.
Proper citation: Multimodal Imaging Laboratory (RRID:SCR_008071) Copy
A laboratory that investigates the molecular mechanisms involved in the development of acute and chronic neurodegenerative disease, with a focus on the role of glutamate excitotoxicity. It aims at unraveling the molecular basis for cell death and edema development in stroke, and explores the pathophysiology of Alzheimer's disease and temporal lobe epilepsy. The main objective of the LMN is to advance understanding of the role of glutamate, as a transmitter substance in the normal brain and as a mediator of excitotoxicity in pathological conditions such as stroke. To this end the LMN employs several vital and nonvital imaging techniques. Model systems includes organotypic slice cultures and transgenic animals. An important focus of the LMN is to explore the role of DNA damage and repair in the pathogenesis of neurodegenerative disease. LMN is also engaged in research on molecular mechanism underlying brain edema, epilepsy, and Alzheimer's disease.
Proper citation: Laboratory of Molecular Neuroscience, University of Oslo (RRID:SCR_008097) Copy
http://www.cabiatl.com/mricro/
MRIcro allows Windows and Linux computers view medical images. It is a standalone program, but includes tools to complement SPM (software that allows neuroimagers to analyze MRI, fMRI and PET images). MRIcro allows efficient viewing and exporting of brain images. In addition, it allows neuropsychologists to identify regions of interest (ROIs, e.g. lesions). MRIcro can create Analyze format headers for exporting brain images to other platforms. Some features of MRIcro are: - Converts medical images to SPM friendly Analyze format. - View Analyze format images (big or little endian). - Create Analyze format headers (big or little endian). - Create 3D regions of interest (with computed volume & intensity). - Overlap multiple regions of interest. - Rotate images to match SPM template images. - Export images to BMP, JPEG, PNG or TIF format. - Yoked images: linked viewing of multiple images (e.g. view same coordinates of PET and MRI scans). Users familiar with other Windows programs will find that this software is fairly straightforward to use. Resting the mouse cursor over a button will cause a text hint to appear over the button. However, a tutorial with a step by step guide of how to use MRIcro with SPM is available.
Proper citation: MRIcro Software (RRID:SCR_008264) Copy
http://diademchallenge.org/data_sets.html
A software development competition, the DIADEM Challenge,to benefit the scientific community by encouraging the development of better software for automating three-dimensional reconstructions of neuronal arbors. The intent of the Sponsors is to ensure that the best software submitted for the competition is made available to the scientific community within a reasonable time and on reasonable terms. No purchase is necessary to enter or win. The competition will have two rounds. As of April 10, 2009, individuals and teams may register to participate in the competition and may download sets of image stacks (Data Sets) of non-human animal brains along with three-dimensional reconstructions for some of these Data Sets for training purposes. Submissions of software, including executable programs, supporting documentation, and reconstruction files for the Data Sets, must be uploaded to the competition website no later than April 9, 2010. In order to be eligible to win the competition, the individuals and at least one member of any teams whose submissions are selected for the Final Round (Finalists) must participate in the Final Round and scientific conference. Personal participation in the Final Round and scientific conference is important for two main reasons: first, because the Finalists software will be tested at the Final Round against additional Data Sets so that the judges can select a winner or winners, and second, because the larger scientific conference, of which the Final Round will be a part, is intended to foster extensive scientific interaction among neuroscientists and computational scientists, including plenary and poster sessions to discuss challenges, solutions, and future directions. There are 5 datasets, all of which have to be reconstructed for the qualifier phase. Once you have registered your group, dataset download information will be sent to you via E-mail. The 5 datasets are: - Cerebellar Climbing Fibers - Hippocampal CA3 Interneuron - Neocortical Layer 6 Axons - Neuromuscular Projection Fibers - Olfactory Projection Fibers Sponsors: The sponsors of this competition are: Allen Institute for Brain Science, Seattle, Washington; Howard Hughes Medical Institute (HHMI), Chevy Chase, Maryland; and Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia.
Proper citation: DIADEM Challenge: DIgital reconstruction of Axonal and DEndritic Morphology (DIADEM) Software Development Competition (RRID:SCR_008262) Copy
The mission of the Institute is to discover the key principles by which brains work and to implement these in artificial systems that interact intelligently with the real world. The Institute of Neuroinformatics is built of many people covering a wide range of disciplines and research areas. The major research projects and areas are listed below. - Behavior and Cognition: At the Institute of Neuroinformatics researchers investigate in Behavior and Cognition on various levels, ranging from neuronal circuit models of learning and adaptation over psychophysical experiments for color constancy up to modeling complex behavioral tasks such as exploration and goal-directed navigation. - Computation in Neural Circuits: By examining the brains of cats, rats and monkeys, and by making simulations of the cortex, INI hopes to learn how this circuit performs such widely different tasks. This knowledge might lead to advances in how computers are designed, and will certainly lead to advances in the subtlety and power of medical neuroscience. - Neurotechnologies: INI aims to harness the principles of biological computation, which can be expected to have a major impact on the technology market as autonomous intelligence pervades equipment, vehicles, buildings, utilities and clothing. Sponsors: INI is supported by European Union (EU), Gerbert Ruf Stiftung, Neuroscience Center (ZNZ), Swiss Confederation (KTI), Swiss Federal Institute of Technology Zurich (ETH), Swiss National Science Foundation (SNF), University of Zurich (UZH), and VW Stiftung
Proper citation: Institute of Neuroinformatics (RRID:SCR_008331) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.