Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
THIS RESOURCE IS NO LONGER IN SERVICE,documented on August 16, 2019. Fugu genome is among the smallest vertebrate genomes and has proved to be a valuable reference genome for identifying genes and other functional elements such as regulatory elements in the human and other vertebrate genomes, and for understanding the structure and evolution of vertebrate genomes. This site presents version 4 of the Fugu genome, released in October 2004 by the International Fugu Genome Consortium. Fugu rubripes has a very compact genome, with less than 15 consisting of dispersed repetitive sequence, which makes it ideal for gene discovery. A draft sequence of the fugu genome was determined by the International Fugu Genome Consortium in 2002 using the ''whole-genome shotgun'' sequencing strategy. Fugu is the second vertebrate genome to be sequenced, the first being the human genome. This webpage presents the annotation made on the fourth assembly by the IMCB team using the Ensembl annotation pipeline. We are continuing with the gap filling work and linking of the scaffolds to obtain super-contigs.
Proper citation: Fugu Genome Project (RRID:SCR_013014) Copy
http://www.unil.ch/comparativegenometrics/
The Comparative Genometrics website displays for sequenced genomes, three different genometric analyses: the DNA walk and the GC and TA skews during the initial phase. Although primarily focused on prokaryotic chromosomes, the CG website posts genometric information on paradigm plasmids, phages, viruses, and organelles. The genometric analyses are available via phylogenetic tree or alphabetical list. It also offers small genome information, for mitochondria, chloroplasts, viruses, bacteriophages, and plasmids.
Proper citation: Comparative Genometrics (RRID:SCR_012920) Copy
http://www.sanger.ac.uk/Projects/D_rerio/
Database of zebrafish genome.
Proper citation: Zebrafish Genome Project (RRID:SCR_013157) Copy
A database of phylogenetic trees of animal genes. It aims at developing a curated resource that gives reliable information about ortholog and paralog assignments, and evolutionary history of various gene families. TreeFam defines a gene family as a group of genes that evolved after the speciation of single-metazoan animals. It also tries to include outgroup genes like yeast (S. cerevisiae and S. pombe) and plant (A. thaliana) to reveal these distant members.TreeFam is also an ortholog database. Unlike other pairwise alignment based ones, TreeFam infers orthologs by means of gene trees. It fits a gene tree into the universal species tree and finds historical duplications, speciations and losses events. TreeFam uses this information to evaluate tree building, guide manual curation, and infer complex ortholog and paralog relations.The basic elements of TreeFam are gene families that can be divided into two parts: TreeFam-A and TreeFam-B families. TreeFam-B families are automatically created. They might contain errors given complex phylogenies. TreeFam-A families are manually curated from TreeFam-B ones. Family names and node names are assigned at the same time. The ultimate goal of TreeFam is to present a curated resource for all the families. phylogenetic tree, animal, vertebrate, invertebrate, gene, ortholog, paralog, evolutionary history, gene families, single-metazoan animals, outgroup genes like yeast (S. cerevisiae and S. pombe), plant (A. thaliana), historical duplications, speciations, losses, Human, Genome, comparative genomics
Proper citation: Tree families database (RRID:SCR_013401) Copy
http://dorina.mdc-berlin.de/rbp_browser/dorina.html
In animals, RNA binding proteins (RBPs) and microRNAs (miRNAs) post-transcriptionally regulate the expression of virtually all genes by binding to RNA. Recent advances in experimental and computational methods facilitate transcriptome-wide mapping of these interactions. It is thought that the combinatorial action of RBPs and miRNAs on target mRNAs form a post-transcriptional regulatory code. We provide a database that supports the quest for deciphering this regulatory code. Within doRiNA, we are systematically curating, storing and integrating binding site data for RBPs and miRNAs. Users are free to take a target (mRNA) or regulator (RBP and/or miRNA) centric view on the data. We have implemented a database framework with short query response times for complex searches (e.g. asking for all targets of a particular combination of regulators). All search results can be browsed, inspected and analyzed in conjunction with a huge selection of other genome-wide data, because our database is directly linked to a local copy of the UCSC genome browser. At the time of writing, doRiNA encompasses RBP data for the human, mouse and worm genomes. For computational miRNA target site predictions, we provide an update of PicTar predictions.
Proper citation: doRiNA (RRID:SCR_013222) Copy
http://proline.bic.nus.edu.sg/dedb/
Database on Drosophila melanogaster exons presented in a splicing graph form. Data is based on release 3.2 of the Drosophila melanogaster genome annotations available at FlyBase. The gene structure information extracted from the annotations were checked, clustered and transformed into splicing graph. The splicing graph form of the gene constructs were then used for classification of the various types of alternative splicing events. In addition, Pfam domains were mapped onto the gene structure. Users can query the database using the query page using BLAST, FlyBase Gene Name, FlyBase Gene Symbol, Pfam Accession Number and Pfam Identifier. This allows users to determine the Drosophila melanogaster homology of their gene using a BLAST search and to visualize the alternative splicing variants if any. Users can also determine genes containing a particular domain using the Pfam Accession Numbers and Identifiers.
Proper citation: Drosophila melanogaster Exon Database (RRID:SCR_013441) Copy
A genome and functional genomic database for the protozoan parasite Toxoplasma gondii. It incorporates the sequence and annotation of the T. gondii ME49 strain, as well as genome sequences for the GT1, VEG and RH (Chr Ia, Chr Ib) strains. Sequence information is integrated with various other genomic-scale data, including community annotation, ESTs, gene expression and proteomics data. Organisms * Toxoplasma gondii (ME49, RH, GT1, Veg strains) * Neospora caninum * environmental isolate sequences from numerous species Tools * BLAST: Identify Sequence Similarities * Sequence Retrieval: Retrieve Specific Sequences using IDs and coordinates * PubMed and Entrez: View the Latest Toxoplasma, Neospora Pubmed and Entrez Results * Genome Browser: View Sequences and Features in the genome browser * Ancillary Genome Browse: Access Additional info like Probeset data and Toxoplasma Array info
Proper citation: ApiDB ToxoDB (RRID:SCR_013453) Copy
Database that provide a genomic information and comparative genomics platform on sea urchins and related echinoderms. It provide collection of information to directly support experimental work on these useful research models in cell and developmental biology.
Proper citation: EchinoBase (RRID:SCR_013732) Copy
This site has been developed by Kazusa DNA Research Institute for the purpose of offering the science community the analyzed sequence data produced by a multi-national Arabidopsis genome sequencing project coordinated by the Arabidopsis Genome Initiatives (AGI). The aim of this service is to enable users to browse the annotated sequence data produced by all the sequencing teams of AGI through an user-friendly graphic display system and search engines. Gene structures proposed on the annotated sequences as well as those predicted by computer programs are presented and each graphic item has a hyperlink to detailed information of the corresponding area. The nucleotide sequence data deposited in GenBank by AGI was downloaded, re-computer-analyzed at Kazusa and parsed results are displayed graphically.
Proper citation: Kazusa Arabidopsis data opening site (RRID:SCR_013511) Copy
http://www.informatics.jax.org/genes.shtml
Searchable database of mouse genes, DNA segments, cytogenetic markers and QTLs. MGI provides access to integrated data on mouse genes and genome features, from sequences and genomic maps to gene expression and disease models.
Proper citation: Genes, Genome Features and Maps (RRID:SCR_017524) Copy
Data collection of large scale genome wide DNA methylation analysis of 1,000 mother-child pairs at serial time points across life course (ARIES).
Proper citation: mqtldb (RRID:SCR_018002) Copy
http://promoter.bx.psu.edu/hi-c/
Genome Browser for study of 3D genome organization and gene regulation and data visualization. Used to visualizing chromatin interaction data, browse other omics data such as ChIP-Seq or RNA-Seq for same genomic region, and gain complete view of both regulatory landscape and 3D genome structure for any given gene., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: 3D Genome (RRID:SCR_017525) Copy
https://www.thermofisher.com/order/catalog/product/00-0210
Scanner for microarray analysis to scan next-generation higher-density arrays, including SNP arrays, tiling arrays for transcription and all-exon arrays for whole-genome analysis.
Proper citation: GeneChip™ Scanner 3000 7G (RRID:SCR_016522) Copy
http://ntap.cbi.pku.edu.cn/usage.php
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Software for tiling array data analysis to survey the genome-wide binding sites of transcription factor HY5 in Arabidopsis and the genome-wide histone modifications/DNA methylation level in rice. It was developed in the process of generating NimbleGen analysis. Written in R and Perl.
Proper citation: NTAP (RRID:SCR_001488) Copy
Part of zebrafish genome project. ZGC project to produce cDNA libraries, clones and sequences to provide complete set of full-length (open reading frame) sequences and cDNA clones of expressed genes for zebrafish. All ZGC sequences are deposited in GenBank and clones can be purchased from distributors of IMAGE consortium. With conclusion of ZGC project in September 2008, GenBank records of ZGC sequences will be frozen, without further updates. Since definition of what constitutes full-length coding region for some of genes and transcripts for which we have ZGC clones will likely change in future, users planning to order ZGC clones will need to monitor for these changes. Users can make use of genome browsers and gene-specific databases, such as UCSC Genome browser, NCBI's Map Viewer, and Entrez Gene, to view relevant regions of genome (browsers) or gene-related information (Entrez Gene).
Proper citation: Zebrafish Gene Collection (RRID:SCR_007054) Copy
http://www.sanger.ac.uk/Projects/D_rerio/zmp/
Create knockout alleles in protein coding genes in the zebrafish genome, using a combination of whole exome enrichment and Illumina next generation sequencing, with the aim to cover them all. Each allele created is analyzed for morphological differences and published on the ZMP site. Transcript counting is performed on alleles with a morphological phenotype. Alleles generated are archived and can be requested from this site through the Zebrafish International Resource Center (ZIRC). You may register to receive updates on genes of interest, or browse a complete list, or search by Ensembl ID, gene name or human and mouse orthologue.
Proper citation: ZMP (RRID:SCR_006161) Copy
http://www.mousephenotype.org/
Center that produces knockout mice and carries out high-throughput phenotyping of each line in order to determine function of every gene in mouse genome. These mice will be preserved in repositories and made available to scientific community representing valuable resource for basic scientific research as well as generating new models for human diseases.
Proper citation: International Mouse Phenotyping Consortium (IMPC) (RRID:SCR_006158) Copy
https://cab.spbu.ru/software/spades/
Software package for assembling single cell genomes and mini metagenomes. Uses short read sets as input. Used for genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. Works with Illumina or IonTorrent reads and can provide hybrid assemblies using PacBio, Oxford Nanopore and Sanger reads. Intended for small genomes like bacterial or fungal., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: SPAdes (RRID:SCR_000131) Copy
http://ccr.coriell.org/Sections/Collections/HuREF/?SsId=78
The Human Reference Genetic Material Repository makes available DNA from a single individual, J. Craig Venter, whose genome has been sequenced and assembled. The DNA samples are prepared from a lymphoblastoid cell line established at Coriell Cell Repositories from a sample of peripheral blood. The DNA samples are available in 50 microgram aliquots. The lymphoblastoid cell line is not available for distribution. The human DNA sample provided is that of J. Craig Venter whose DNA from white blood cells and sperm was sequenced using Sanger chemistry (ABI Capillary Electrophoresis Platforms 3700 and 3730xl), assembled using the Celera Assembler and was published in PLoS Biology . J. Craig Venter, born on 14 October 1946, is a Caucasian male of self-reported European-American ancestry. The data available on this sample, whose genome assembly is referred to as HuRef, includes: * Whole Genome Shotgun Sequencing data * Sequence trace set deposited by JCVI in the NCBI trace archive * Human Genome Browser displaying sequence assembly, DNA variants and gene annotations Additional data sets from this study include: * Full set of Sanger reads used for genome assembly * SNP and insertion/deletion variant on the human genome sequence coordinates (NCBI version 36) * Affymetrix 500K GeneChip data * Illumina HumanHap650Y Genotyping BeadChip data Given the amount of data publicly available the genomic content of this sample, HuRef will be useful as a reference for many genetic studies.
Proper citation: Human Reference Genetic Material Repository (RRID:SCR_004693) Copy
https://blobtoolkit.genomehubs.org/blobtools2/
Software suite for identifying and isolating non-target data in draft and publicly available genome assemblies. Used to process assembly, read and analysis files for fully reproducible interactive exploration in browser-based Viewer. Used for interactive quality assessment of genome assemblies .BlobTools2 is reimplementation of BlobTools, written in Python 3 with fully modular design to make creating new datasets and adding additional analysis types easier.
Proper citation: BlobTools2 (RRID:SCR_023351) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.