Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 7 showing 121 ~ 140 out of 172 results
Snippet view Table view Download 172 Result(s)
Click the to add this resource to a Collection

http://www.nitrc.org/projects/frats/

Software for the analysis of multiple diffusion properties along fiber bundle as functions in an infinite dimensional space and their association with a set of covariates of interest, such as age, diagnostic status and gender, in real applications. The resulting analysis pipeline can be used for understanding normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles.

Proper citation: Functional Regression Analysis of DTI Tract Statistics (RRID:SCR_002293) Copy   


http://www.nitrc.org/projects/rmdtitemplate/

A population-specific DTI template for young adolescent Rhesus Macaque (Macaca mulatta) monkeys using 271 high-quality scans. Using such a large number of animals in generating a template allows it to account for variability in the species. Their DTI template is based on the largest number of animals ever used in generating a computational brain template. It is anticipated that their DTI template will help facilitate voxel-based and tract specific WM analyses in non-human primate species, which in turn may increase our understanding of brain function, development, and evolution.

Proper citation: DTI-TEMPLATE-RHESUS-MACAQUES (RRID:SCR_002482) Copy   


  • RRID:SCR_002697

    This resource has 1+ mentions.

http://www.loni.usc.edu/Software/ShapeTools

Software library that is a collection of Java classes that enable Java programmers to model, manipulate and visualize geometric shapes and associated data values. It simplifies the creation of application programs by providing a ready-made set of support routines. * File format readers that implement ShapeIO interface (modeled after Java ImageIO) are automatically used when appropriate. * Storage of additional metadata of arbitrary type (other than shape vertices and interconnections) is enabled by the use of data attributes. * Shapes may contain a set of child shapes allowing for the construction and manipulation of complex hierarchies of shapes. * The various components of a shape are specified as interfaces with specific implementations, making it easy to create specialized implementations of a shape component when different performance characteristics are required.

Proper citation: LONI ShapeTools (RRID:SCR_002697) Copy   


  • RRID:SCR_014115

    This resource has 1+ mentions.

http://www.nitrc.org/projects/gimme/

Software Matlab toolbox for directed functional connectivity analysis of fMRI BOLD signal from predefined regions of interest. It recovers true structure of connections and estimates weights attributed to each connection. Obtains patterns at group and individual levels.

Proper citation: GIMME (RRID:SCR_014115) Copy   


https://doi.org/10.5281/zenodo.592960

Image reconstruction software for MRI. Its library provides common operations on multi-dimensional arrays, Fourier and wavelet transforms, as well as generic implementations of iterative optimization algorithms.

Proper citation: Berkeley Advanced Reconstruction Toolbox (RRID:SCR_016168) Copy   


  • RRID:SCR_002981

    This resource has 50+ mentions.

http://www.emouseatlas.org

Detailed multidimensional digital multimodal atlas of C57BL/6J mouse nervous system with data and informatics pipeline that can automatically register, annotate, and visualize large scale neuroanatomical and connectivity data produced in histology, neuronal tract tracing, MR imaging, and genetic labeling. MAP2.0 interoperates with commonly used publicly available databases to bring together brain architecture, gene expression, and imaging information into single, simple interface.Resource to visualise mouse development, identify anatomical structures, determine developmental stage, and investigate gene expression in mouse embryo. eMouseAtlas portal page allows access to EMA Anatomy Atlas of Mouse Development and EMAGE database of gene expression.EMAGE is freely available, curated database of gene expression patterns generated by in situ techniques in developing mouse embryo. EMA, e-Mouse Atlas, is 3-D anatomical atlas of mouse embryo development including histology and includes EMAP ontology of anatomical structure, provides information about shape, gross anatomy and detailed histological structure of mouse, and framework into which information about gene function can be mapped.

Proper citation: eMouseAtlas (RRID:SCR_002981) Copy   


http://www.reproducibleimaging.org

Center to help neuroimaging researchers to find and share data in FAIR fashion, to describe their data and analysis workflows in replicable fashion, to manage their computational resource options so that outcomes of neuroimaging research are more reproducible.

Proper citation: ReproNim: A Center for Reproducible Neuroimaging Computation (RRID:SCR_016001) Copy   


  • RRID:SCR_017255

    This resource has 10+ mentions.

https://github.com/bids-standard/bids-validator

Software validation tool that checks submitted folder structure for compliance to BIDS data standard. Validates Brain Imaging Data Structure.

Proper citation: BIDS Validator (RRID:SCR_017255) Copy   


  • RRID:SCR_022601

    This resource has 1+ mentions.

https://github.com/denisecailab/minian

Software miniscope analysis pipeline that requires low memory and computational demand so it can be run without specialized hardware. Offers interactive visualization that allows users to see how parameters in each step of pipeline affect output.

Proper citation: Minian (RRID:SCR_022601) Copy   


  • RRID:SCR_004820

http://mind.loni.usc.edu

The MiND: Metadata in NIfTI for DWI framework enables data sharing and software interoperability for diffusion-weighted MRI. This site provides specification details, tools, and examples of the MiND mechanism for representing important metadata for DWI data sets at various stages of post-processing. MiND framework provides a practical solution to the problem of interoperability between DWI analysis tools, and it effectively expands the analysis options available to end users. To assist both users and developers in working with MiND-formatted files, we provide a number of software tools for download. * MiNDHeader A utility for inspecting MiND-extended files. * I/O Libraries Programming libraries to simplify writing and parsing MiND-formatted data. * Sample Files Example files for each MiND schema. * DIRAC LONI''s Diffusion Imaging Reconstruction and Analysis Collection is a DWI processing suite which utilizes the MiND framework.

Proper citation: LONI MiND (RRID:SCR_004820) Copy   


http://mouseatlas.caltech.edu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on October, 01, 2019.
3D digital atlas of normal mouse development constructed from magnetic resonance image data. The download is a zipped file containing the six atlases Theiler Stages (ts) 13, 21,23, 24, 25 and 26 and MRI data for an unlabeled ts19 embryo. To view the atlases, download and install MBAT from: http://mbat.loni.ucla.edu Specimens were prepared in aqueous, isotonic solutions to avoid tissue shrinkage. Limited specimen handling minimized physical perturbation of the embryos to ensure accurate geometric representations of developing mouse anatomy. Currently, the atlas contains orthogonal sections through MRI volumes, three stages of embryos that have annotated anatomy, photographs of several stages of development, lineage trees for annotated embryos and a gallery of images and movies derived from the annotations. Anatomical annotations can be viewed by selecting a transverse section and selecting a pixel on the displayed slice.

Proper citation: 3D MRI Atlas of Mouse Development (RRID:SCR_008090) Copy   


http://www.nitrc.org/projects/whs-sd-atlas/

Open access volumetric atlas of anatomical delineations of rat brain based on structural contrast in isotropic magnetic resonance and diffusion tensor images acquired ex vivo from 80 day old male Sprague Dawley rat at Duke Center for In Vivo Microscopy. Spatial reference is provided by Waxholm Space coordinate system. Location of bregma and lambda are identified as anchors towards stereotaxic space. Application areas include localization of signal in non structural images. Atlas, MRI and DTI volumes, and diffusion tensor data are shared in NIfTI format.

Proper citation: Waxholm Space Atlas of the Sprague Dawley Rat Brain (RRID:SCR_017124) Copy   


  • RRID:SCR_002010

    This resource has 1000+ mentions.

http://www.nitrc.org/projects/itk-snap/

Open source interactive software application for three dimentional medical images, manual delineation of anatomical regions of interest, and performing automatic image segmentation. Used for delineating anatomical structures and regions in MRI, CT and other 3D biomedical imaging data.WebGL-based viewer for volumetric data. It is capable of displaying arbitrary (non axis-aligned) cross-sectional views of volumetric data, as well as 3-D meshes and line-segment based models (skeletons).

Proper citation: ITK-SNAP (RRID:SCR_002010) Copy   


  • RRID:SCR_001953

    This resource has 1000+ mentions.

https://github.com/trendscenter/gift

Software MATLAB toolbox which implements multiple algorithms for independent component analysis and blind source separation of group (and single subject) functional magnetic resonance imaging data. GIFT works on MATLAB 6.5 and higher. Many ICA algorithms were generously contributed by Dr. Andrzej Cichocki.

Proper citation: Group ICA of fMRI Toolbox (RRID:SCR_001953) Copy   


  • RRID:SCR_002478

    This resource has 1+ mentions.

http://mialab.mrn.org/software/eegift/index.html

Implements multiple algorithms for independent component analysis and blind source separation of group (and single subject) EEG data. This MATLAB toolbox is compatible with MATLAB 6.5 and higher.

Proper citation: Group ICA Of EEG Toolbox (RRID:SCR_002478) Copy   


http://www.itk.org

Open source, cross platform library that provides developers with extensive suite of software tools for image analysis. Developed through extreme programming methodologies, ITK builds on proven, spatially oriented architecture for processing, segmentation, and registration of scientific images in two, three, or more dimensions.

Proper citation: Insight Segmentation and Registration Toolkit (RRID:SCR_001149) Copy   


http://dti-tk.sourceforge.net/pmwiki/pmwiki.php

A spatial normalization and atlas construction toolkit optimized for examining white matter morphometry using DTI data with special care taken to respect the tensorial nature of the data. It implements a state-of-the-art registration algorithm that drives the alignment of white matter (WM) tracts by matching the orientation of the underlying fiber bundle at each voxel. The algorithm has been shown to both improve WM tract alignment and to enhance the power of statistical inference in clinical settings. A 2011 study published in NeuroImage ranks DTI-TK the top-performing tool in its class. Key features include: * open standard-based file IO support: NIfTI format for scalar, vector and tensor image volumes * tool chains for manipulating tensor image volumes: resampling, smoothing, warping, registration & visualization * pipelines for WM morphometry: spatial normalization & atlas construction for population-based studies * built-in cluster-computing support: support for open source Sun Grid Engine (SGE) * Interoperability with other popular DTI tools: AFNI, Camino, FSL & DTIStudio * Interoperability with ITK-SNAP: support multi-modal visualization and segmentation

Proper citation: Diffusion Tensor Imaging ToolKit (RRID:SCR_001642) Copy   


  • RRID:SCR_001761

    This resource has 500+ mentions.

http://neuroimage.usc.edu/brainstorm/

Software as collaborative, open source application dedicated to analysis of brain recordings: MEG, EEG, fNIRS, ECoG, depth electrodes and animal invasive neurophysiology. User-Friendly Application for MEG/EEG Analysis.

Proper citation: Brainstorm (RRID:SCR_001761) Copy   


http://www.nitrc.org/projects/laplacebeltrami/

A filter which allows the Laplace-Beltrami operator to determine surface harmonics in terms of PointData at each vertex. It determines the requested N most significant harmonics of a surface.

Proper citation: Laplace Beltrami Filter on QuadEdge Meshes (RRID:SCR_014133) Copy   


http://www.nitrc.org/projects/ap_seg_2013_nih/

A MATLAB GUI for segmenting and quantifying PET images with multi-focal and diffuse uptakes. It imports a PET image and allows the user to draw region of interests (ROIs) in 2D or 3D to roughly separate the object of interest from the background. The areas are then segmented using a PET image segmentation method based on Affinity Propagation clustering to cluster the image intensities into meaningful groups. For quantification, the Standardized Uptake Value measurements of the binary or the user defined ROI are SUVmax, SUVmean, and Volume (mm^3) and can be exported into an excel sheet.

Proper citation: NIH-CIDI Segmentation of PET Images based on Affinity Propagation Clustering (RRID:SCR_014151) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X