Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 526 results
Snippet view Table view Download 526 Result(s)
Click the to add this resource to a Collection

http://www.atlas.or.kr/

Database of images on medical parasitology created to provide educational materials for medical students primarily, but professional workers in medical or paramedical fields may also refer to this site covering the significant parasites in the world. Each database of protozoans, nematodes, trematodes, cestodes and arthropods contains information on the morphology, life cycle, geographical distribution, symptoms, prevention, etc. Users who wish to contribute can send the editor unpublished images of human parasites (microscopical, clinical, radiological or epidemiological aspects of human parasitic infections) by mail or e-mail. Pathology specimens (slide, samples) are welcome too. The A.M.P. received the citation of reliable sources such as Parasitology today and The Lancet, and is now listed in the Internet Resources on Specific Infectious Diseases Topics of the Mandell, Douglas and Bennets Principles and Practice of Infectious Diseases Fifth Edition.
This website was established with a great contribution of the PROJECT COLLABORATORS and many contributors of The Korean Society for Parasitology.

Proper citation: Atlas of Medical Parasitology (RRID:SCR_008163) Copy   


  • RRID:SCR_008033

    This resource has 100+ mentions.

http://www.gene-regulation.com/pub/databases.html

In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.

Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy   


  • RRID:SCR_008154

    This resource has 1+ mentions.

http://ncv.unl.edu/Angelettilab/HPV/Database.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.

Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy   


http://www.animalgenome.org/pigs/nagrp.html

Database and resources on the pig genome.

Proper citation: U.S. Pig Genome Project (RRID:SCR_008151) Copy   


http://psychiatry.ucsd.edu/Neuroembryologylab/index.htm

Dr. Eric Turner''s laboratory studies the mechanisms underlying the development of the nervous system. The vertebrate brain is comprised of a tremendous variety of neurons, each class exhibiting a unique phenotype characterized by the expression of specific neurotransmitter receptors, ion channels, patterns of axonal growth, and synapse formation. The research we conduct focuses on the critical role transcription factors play in the specification of neuronal cell type during development. We are particularly interested in transcription factors of the homeodomain family that bind to DNA and in doing so activate or repress gene expression. One area of study is the role of POU-domain transciption factor Brn3a in axon growth and survival. The primary research areas are: * Neuronal cell fate determination: The expression of regulatory genes is manipulated in living chick embryos using microsurgery and electroporation and the effects on neural marker genes studied. * Molecular mechanisms of gene regulation: Target DNA binding sites of neural transcription factors are biochemically characterized and findings coordinated with sequence data from the mouse and human genomes. * Targeted misexpression of regulatory genes: Transgenic and knockout mouse technology is used to misexpress genes of interest, and the effects on neural marker genes, axonal growth, and cell survival studied. * Global analysis of neural gene expression: Micro-arrays (GeneChips) are employed in conjunction with other areas of study to understand the coordinated regulation of gene expression in the nervous system. Dr. Turner is a member of the University of California, San Diego''s Graduate Program in Neuroscience and Biomedical Sciences Program and accepts students from these two programs. Interesting rotation projects are available using methods ranging from biochemistry and molecular biology to embryology. Additionally, Dr. Turner is also the Director of this NIMH-funded training program for research-oriented psychiatrists, psychologists, and basic neuroscientists working in areas relevant to psychiatry. Typically Fellows spend two years in the program, during which they develop a research project under the close supervision of one of the highly productive members of the UCSD Department of Psychiatry, or another investigator in the La Jolla (UCSD/Salk/Scripps) research community.

Proper citation: Department of Psychiatry, Turner Laboratory (RRID:SCR_008067) Copy   


  • RRID:SCR_008183

    This resource has 1+ mentions.

http://genewindow.nci.nih.gov/

Software tool for pre- and post-genetic bioinformatics and analytical work, developed and used at the Core Genotyping Facility (CGF) at the National Cancer Institute. While Genewindow is implemented for the human genome and integrated with the CGF laboratory data, it stands as a useful tool to assist investigators in the selection of variants for study in vitro, or in novel genetic association studies. The Genewindow application and source code is publicly available for use in other genomes, and can be integrated with the analysis, storage, and archiving of data generated in any laboratory setting. This can assist laboratories in the choice and tracking of information related to genetic annotations, including variations and genomic positions. Features of GeneWindow include: -Intuitive representation of genomic variation using advanced web-based graphics (SVG) -Search by HUGO gene symbol, dbSNP ID, internal CGF polymorphism ID, or chromosome coordinates -Gene-centric display (only when a gene of interest is in view) oriented 5 to 3 regardless of the reference strand and adjacent genes -Two views, a Locus Overview, which varies in size depending on the gene or genomic region being viewed and, below it, a Sequence View displaying 2000 base pairs within the overview -Navigate the genome by clicking along the gene in the Locus Overview to change the Sequence View, expand or contract the genomic interval, or shift the view in the 5 or 3 direction (relative to the current gene) -Lists of available genomic features -Search for sequence matches in the Locus Overview -Genomic features are represented by shape, color and opacity with contextual information visible when the user moves over or clicks on a feature -Administrators can insert newly-discovered polymorphisms into the Genewindow database by entering annotations directly through the GUI -Integration with a Laboratory Information Management System (LIMS) or other databases is possible

Proper citation: GeneWindow (RRID:SCR_008183) Copy   


http://www.utsa.edu/claibornelab/

The long-term goals of my research are to understand the relationship between neuronal structure and function, and to elucidate the factors that affect neuronal morphology and function over the lifespan of the mammal. Currently we are examining 1) the effects of synaptic activity on neuronal development; 2) the effects of estrogen on neuronal morphology and on learning and memory; and, 3) the effects of aging on neuronal structure and function. We have focused our efforts on single neurons in the hippocampal formation, a region that is critical for certain forms of learning and memory in rodents and humans. From the portal, you may click on a cell in your region of interest to see the complete database of cells from that region. You may also explore the Neuron Database: * Comparative Electrotonic Analysis of Three Classes of Rat Hippocampal Neurons. (Raw data available) * Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. * Dendritic Growth and Regression in Rat Dentate Granule Cells During Late Postnatal Development.(Raw data available) * A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus.

Proper citation: University of Texas at San Antonio Laboratory of Professor Brenda Claiborne (RRID:SCR_008064) Copy   


http://www.osc.riken.jp/english/

Omics Science Center is aiming to develop a comprehensive system called Life Science Accelerator(LSA) for the advancement of omics research. The LSA is a comprehensive system consists of biological resources, human resources, technologies, know-how, and essential administrative ability. Ultimate goal of LSA is to support and accelerate the advancement in life science research. Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.

Proper citation: RIKEN Omics Science Center (RRID:SCR_008241) Copy   


http://www.liden.cc/Visionary/

It is a dictionary for terminology used in the study of human and animal vision. It includes terms from the areas of biological and machine vision, visual psychophysics, visual neuroscience and other related fields. Sponsors: Visionary is sponsored by Educational Software for Autism.

Proper citation: Visionary: A Dictionary for the Study of Vision (RRID:SCR_008307) Copy   


  • RRID:SCR_008252

    This resource has 1+ mentions.

http://www.hopkins-hivguide.org/

Launched in 2004, the HIV Guide is a single disease resource, with two main parts: the HIV database, which is accessed by searching on diagnosis, drug name, pathogen, or management or by accessing the resistance tool, and there are also browsable areas of the site, which include news, features, continuing medical education programs and other types of additional readings and information. Guides are authored by academic clinicians and subject to rigorous peer review. You may browse the guide by: Diagnosis Covering opportunistic infections, malignancies, and complications of therapy. Drugs Includes indications, dosing, drug interactions, and author recommendations. Pathogen - Describes microbiology, clinical syndromes, and therapy. Management Including antiretroviral therapy guidelines and strategies. Resistance Tool Provides up-to-date interpretation of genotypic resistance test results. Whether searching for a drug, a pathogen, a diagnosis, or a management issue, your search results will be delivered in a concise and standard form designed to give you the most clinically useful information first, with the option to go deeper if you choose. If you search by diagnosis, you will receive a page listing points covering establishment of a diagnosis, related pathogens, treatment recommendations, issues to consider on follow up, references and more. At each step, we provide you immediately with the information you need to treat the diagnosis and give you the option to read more or more deeply if you choose. On the diagnosis page, you are also provided with links to the information sheet for each drug that may be prescribed, and if you indicate which drug you intend to use, you will be provided with relevant drug selected comments. If you search by drug, you will receive a page listing FDA indications, usual adult dosing, adverse drug reactions, drug interactions, spectrum, and forms. You are also able to access full pharmacological information (mechanism, absorption, Cmax, volume of distribution, protein binding, metabolism/excretion, t _, dosing for glomerular filtration of 50-80, dosing for glomerular filtration of 10-50, dosing for glomerular filtration of <10 ml/min, dosing in hemodialysis, dosing in peritoneal dialysis, dosing in cavh, dosing for decreased hepatic function, pregnancy risk, and breast feeding compatibility). If you search by pathogen, you will receive a page covering the microbiology, clinical relevance, sites of infection, drug selected comments, other information and references. You are also provided with links to information for each drug that may be prescribed, and if you indicate which drug you intend to use, you will be provided with the drug selected comments for that choice. If you search by management, you will receive a page listing definition, indications, and clinical recommendations and additional details, including references. If you click on more wherever it appears on a page, you will find more detailed material about the topic. In addition, the HIV Guide homepage contains a Features section and Literature Review that contain synopses and articles about pertinent topics. The Publications section also provides .pdf versions of the Hopkins HIV Report. Prices represent the cost per unit specified, reflecting the Average Wholesale Price (AWP). AWP prices are taken from the Red Book, manufacturer information, and the McKesson database. These prices are updated every six months. We have listed up to 10 FDA-approved indications for uses of drugs. Though in some cases more may exist, for brevity and formatting issues authors and editors have chosen what they deem the most important. Also listed are disease states for which a drug may be likely prescribed regardless of FDA approval status (see Non-FDA approved uses). The HIV Guide is primarily focused on adult care but does cover issues of perinatal transmission. The material presented on this site represents the considered opinion of the Hopkins expert listed as the author of the module as of the date indicated. The reference section contains an annotated list of the articles that the author considers to be most relevant to the topic. Where authoritative guidelines exist, such as CDC, IDSA or Medical Letter guidelines, they are referenced and discussed along with the author''s recommendations presented.

Proper citation: HIV Guide (RRID:SCR_008252) Copy   


http://cprc.rcm.upr.edu/

Center for the study of non-human primates. Its mission is the study and use of non-human primates as models for studies of social and biological interactions and for the discovery of methods of prevention, diagnosis and treatment of diseases that afflict humans. Through the stewardship of three unique facilities—Cayo Santiago Field Station, Sabana Seca Field Station, and the Laboratory of Primate Morphology supports a diverse range of research programs that enhance understanding of primate biology and behavior, with direct applications in biomedical and translational research.

Proper citation: Caribbean Primate Research Center (RRID:SCR_008345) Copy   


http://www.snprc.org/

Center that supports studies of nonhuman primate models of human diseases, including common chronic diseases and infectious diseases and the effects that genetics and the environment have on physiological processes and disease susceptibility. SNPRC encourages the use of its resources by investigators from the national and international biomedical research communities.

Proper citation: Southwest National Primate Research Center (RRID:SCR_008292) Copy   


http://www.brainvoyager.de/BV2000OnlineHelp/BrainVoyagerWebHelp/Talairach_brain_atlas.htm

The Talairach brain atlas visualized via BrainVoyager (Commercial software) can be used to visualize Brodmann areas as they were defined for the Talairach brain (Talairach & Tournaux, 1988) and to compare regions of subjects with respect to the Brodmann areas. The demarcated areas are based on the Talairach demon, which is a digitized version of the Talairach atlas and which has been transferred into BrainVoyager VOI files by Matthias Ruf, Mannheim. Using the Brodman.voi file you may ask questions like the following: What is the signal time course of subject N in experiment A within Brodmann area X ?. Note, however, that the defined areal boundaries should be used only as a rough guideline for determining the location of activated regions: There is substantial variation of histologically defined areas between subjects. Since cytoarchitectonically defined Brodmann areas are not available in vivo, we advise to use the provided information with care. The TalairachBrain.vmr file is located in the same folder as your BrainVoyager executable file. It can be loaded as any VMR project by using the Open... item in the File menu (or the Open icon). The TalairachBrain.vmr file is also loaded automatically when using the glass brain visualization tool.

Proper citation: BrainVoyager: Talairach Brain Atlas (RRID:SCR_008800) Copy   


  • RRID:SCR_008674

    This resource has 1+ mentions.

http://www.pathonet.org

PathoNet is a virtual meeting place for pathologists from all over the world. They can use it as a virtual pathology laboratory in which they can exchange their views on their cases. Join us and share your experience. Special or rare cases maybe very useful in the diagnostic practice. Everybody who would like to use digital microscopy in human, veterinary or forensic pathology; in laboratory medicine, in human anatomy; in experimental research, and when teaching can benefit from this resource. Additionally, practicing physicians, students, tutors, experts and researchers can all contribute and benefit from PathoNet. Sponsors: This resource is supported by 3DHISTECH Ltd.

Proper citation: PATHONET (RRID:SCR_008674) Copy   


http://www.muschealth.com/multimedia/Podcasts/index.aspx?type=main

The MUSChealth.com Podcast Library, featuring podcasts on a variety of topics related to your health and our services here at MUSC. These medical podcasts are hosted by MUSC faculty, physicians and special guests and are produced and directed by Linda Austin, M.D. Current topics include: * Academics and Education * Aging, Geriatrics and Caregiving * Alcohol and Drug Dependency * Allergies and Asthma * Ashley River Tower * Bones, Joints, Muscles and Spine * Cancer * Children''s Health * Cosmetic Surgery * Dental * Dermatology/Skin Problems * Diabetes, Endocrinology and Metabolism * Digestive Health * ENT: Ear, Nose and Throat * Executive Health * Eye Health * General Health and Wellness * Heart and Vascular Health * Hospice * Kohl''s Take a Minute for Kids * Lungs and Breathing * Men''s Health * Mental Health * MUSC News and Events * Neurological Health * Organ Transplant * Osteoporosis * Pregnancy - Week by Week * Pregnancy and Childbirth * Radiology * Research and Clinical Trials * SC Health, Leadership and Policy * Sports Medicine * Stroke * Urology * Weight Loss Surgery Follow-up * Weight Management * Women''s Health

Proper citation: MUSC Health Podcast Library (RRID:SCR_008827) Copy   


  • RRID:SCR_000448

    This resource has 100+ mentions.

http://www.talairach.org/

Software automated coordinate based system to retrieve brain labels from the 1988 Talairach Atlas. Talairach Daemon database contains anatomical names for brain areas using x-y-z coordinates defined by the 1988 Talairach Atlas.

Proper citation: Talairach Daemon (RRID:SCR_000448) Copy   


http://www.pbtc.org/

The PEDIATRIC BRAIN TUMOR CONSORTIUM (PBTC) is a multidisciplinary cooperative research organization devoted to the study of correlative tumor biology and new therapies for primary CNS tumors of childhood. PBTC's mission is to contribute rapidly and effectively to the understanding and cure of these tumors through the conduct of multi-center, multidisciplinary, innovative studies with designs and analyses based on uniformly high quality statistical science. While the primary mission of the PBTC is to identify through laboratory and clinical science superior treatment strategies for children with brain cancers, the PBTC investigators recognize their profound responsibility to meet the special needs of the children and families as they face this enormous challenge. Members are committed to working within their institutions and communities to improve support services and follow up care for these patients and their families. The PBTC's primary objective is to rapidly conduct novel phase I and II clinical evaluations of new therapeutic drugs, new biological therapies, treatment delivery technologies and radiation treatment strategies in children from infancy to 21 years of age with primary central nervous system (CNS) tumors. A second objective is to characterize reliable markers and predictors (direct or surrogate) of brain tumors' responses to new therapies. The Consortium conducts research on brain tumor specimens in the laboratory to further understand the biology of pediatric brain tumors. A third objective is to develop and coordinate innovative neuro-imaging techniques. Through the PBTC's Neuro-Imaging Center, formed in May 2000, research to evaluate new treatment response criteria and neuro-imaging methods to understand regional brain effects is in progress. These imaging techniques can also advance understanding of significant neuro-toxicity in a developing child's central nervous system. The Neuro-Imaging Center is supported in part by private sources - grants from foundations and non-profit organizations - in addition to the NCI. As an NCI funded Consortium, the Pediatric Brain Tumor Consortium (PBTC) is required to make research data available to other investigators for use in research projects. An investigator who wishes to use individual patient data from one or more of the Consortium's completed and published studies must submit in writing a description of the research project, the PBTC studies from which data are requested, the specific data requested, and a list of investigators involved with the project and their affiliated research institutions. A copy of the requesting investigator's CV must also be provided. Participating Institutions: Children's Hospital of Philadelphia, Children's National Medical Center (Washington, DC), Children's Memorial Hospital (Chicago), Duke University, National Cancer Institute, St. Jude Children's Research Hospital, Texas Children's Cancer Center, University of California at San Francisco, and University of Pittsburgh.

Proper citation: Pediatric Brain Tumor Consortium (RRID:SCR_000658) Copy   


http://cvrl.ioo.ucl.ac.uk/index.htm

The Colour & Vision Research laboratory and database are based at the Institute of Ophthalmology, which is part of University College London. The Institute and CVRL are both closely associated with Moorfields Eye Hospital. The Institute is next door to Moorfields Eye Hospital near Old Street tube station (see directions). At the Colour & Vision Research laboratory, we investigate normal and clinical human visual perception. Our research focuses on questions about colour perception, light and dark adaptation, night-time vision, and the temporal and spatial properties of vision. Our primary goal is to understand the nature of the mechanisms that underlie visual perception, and to understand how those mechanism malfunction in clinical cases. More details about our research can be found by looking at the publications of members of the laboratory. The CVRL database, first set up in 1995, provides an annotated library of downloadable standard data sets relevant to colour and vision research. The focus of this site is primarily scientific and technical, but some introductory background information is also provided. A consistent set of functions for modeling colour vision based on the Stockman & Sharpe cone fundamentals and on our more recent luminous efficiency measurements are summarized under the category CVRL functions. These functions are tabulated in 0.1, 1 and 5 nm steps and can be returned as csv, xml, or tabular data or as dynamic plots. The Stockman & Sharpe cone fundamentals are the basis of a CIE proposal for physiologically-relevant colour matching functions. These functions, which are indentical to the CVRL functions, are summarized under the category CIE 2007 functions. The CIE functions are also tabulated in 0.1, 1 and 5 nm steps, and can also be returned as csv, xml, or tabular data or as dynamic plots. Significant additions to the database are the individual colour matching measurements made by Stiles & Burch. These have been compiled and cross-checked with the help of Boris Oicherman, Alexander Logvinenko, and Abhijit Sarkar from hard copies of the original data provided by Pat Trezona and Mike Webster. They can be obtained as Excel files and are available for both 2 and 10 colour matches. Other data sets, which are provided as csv files, include cone fundamentals, colour matching functions, chromaticity coordinates, prereceptoral filter density spectra, photopigment spectra, and CIE standards. Many of these data sets can also be viewed as dynamic plots. Sponsors: CVRL is funded by BBSRC The Wellcome Trust, Fight for Sight, National Eye Institute, and NIH.

Proper citation: Colour and Vision Research Laboratory (RRID:SCR_000770) Copy   


http://fantom.gsc.riken.jp/

International collaborative research project and database of annotated mammalian genome. Used to improve estimates of total number of genes and their alternative transcript isoforms in both human and mouse. Consortium to assign functional annotations to full length cDNAs that were collected during Mouse Encyclopedia Project at RIKEN.

Proper citation: Functional Annotation of the Mammalian Genome (RRID:SCR_000788) Copy   


  • RRID:SCR_000807

http://www.yandell-lab.org/software/index.html

Sequenced genomes contain a treasure trove of information about how genes function and evolve. Getting at this information, however, is challenging and requires novel approaches that combine computer science and experimental molecular biology. My lab works at the intersection of both domains, and research in our group can be summarized as follows: generate hypotheses concerning gene function and evolution by computational means, and then test these hypotheses at the bench. This is easier said than done, as serious barriers still exist to using sequenced genomes and their annotations as starting points for experimental work. Some of these barriers lie in the computational domain, others in the experimental. Though challenging, overcoming these barriers offers exciting training opportunities in both computer science and molecular genetics, especially for those seeking a future at the intersection of both fields. Ongoing projects in the lab are centered on genome annotation and comparative genomics; exploring the relationships between sequence variation and human disease; and high-throughput biological image analysis. Current software tools available: VAAST (the Variant Annotation, Analysis & Search Tool) is a probabilistic search tool for identifying damaged genes and their disease-causing variants in personal genome sequences. VAAST builds upon existing amino acid substitution (AAS) and aggregative approaches to variant prioritization, combining elements of both into a single unified likelihood-framework that allows users to identify damaged genes and deleterious variants with greater accuracy, and in an easy-to-use fashion. VAAST can score both coding and non-coding variants, evaluating the cumulative impact of both types of variants simultaneously. VAAST can identify rare variants causing rare genetic diseases, and it can also use both rare and common variants to identify genes responsible for common diseases. VAAST thus has a much greater scope of use than any existing methodology. MAKER 2 (updated 01-16-2012) MAKER is a portable and easily configurable genome annotation pipeline. It's purpose is to allow smaller eukaryotic and prokaryotic genomeprojects to independently annotate their genomes and to create genome databases. MAKER identifies repeats, aligns ESTs and proteins to a genome, produces ab-initio gene predictions and automatically synthesizes these data into gene annotations having evidence-based quality values. MAKER is also easily trainable: outputs of preliminary runs can be used to automatically retrain its gene prediction algorithm, producing higher quality gene-models on seusequent runs. MAKER's inputs are minimal and its ouputs can be directly loaded into a GMOD database. They can also be viewed in the Apollo genome browser; this feature of MAKER provides an easy means to annotate, view and edit individual contigs and BACs without the overhead of a database. MAKER should prove especially useful for emerging model organism projects with minimal bioinformatics expertise and computer resources. RepeatRunner RepeatRunner is a CGL-based program that integrates RepeatMasker with BLASTX to provide a comprehensive means of identifying repetitive elements. Because RepeatMasker identifies repeats by means of similarity to a nucleotide library of known repeats, it often fails to identify highly divergent repeats and divergent portions of repeats, especially near repeat edges. To remedy this problem, RepeatRunner uses BLASTX to search a database of repeat encoded proteins (reverse transcriptases, gag, env, etc...). Because protein homologies can be detected across larger phylogenetic distances than nucleotide similarities, this BLASTX search allows RepeatRunner to identify divergent protein coding portions of retro-elements and retro-viruses not detected by RepeatMasker. RepeatRunner merges its BLASTX and RepeatMasker results to produce a single, comprehensive XML-based output. It also masks the input sequence appropriately. In practice RepeatRunner has been shown to greatly improve the efficacy of repeat identifcation. RepeatRunner can also be used in conjunction with PILER-DF - a program designed to identify novel repeats - and RepeatMasker to produce a comprehensive system for repeat identification, characterization, and masking in the newly sequenced genomes. CGL CGL is a software library designed to facilitate the use of genome annotations as substrates for computation and experimentation; we call it CGL, an acronym for Comparitive Genomics Library, and pronounce it Seagull. The purpose of CGL is to provide an informatics infrastructure for a laboratory, department, or research institute engaged in the large-scale analysis of genomes and their annotations.

Proper citation: Yandell Lab Portal (RRID:SCR_000807) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X