Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 134 results
Snippet view Table view Download 134 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_016017

https://github.com/ABCD-STUDY/timeline-followback

Software to capture subject information about substance use using local copies of external files provided by the abcd-report framework of ABCD. No connection to REDCap is attempted to get events and participant names but local files are read in to supply this information.

Proper citation: timeline-followback (RRID:SCR_016017) Copy   


  • RRID:SCR_016026

https://github.com/ABCD-STUDY/aux-file-upload

Software application to upload functional MR imaging runs produce auxilary data that can be collected centrally. Connects to a subject database research electronic data capture (REDCap).

Proper citation: aux-file-upload (RRID:SCR_016026) Copy   


  • RRID:SCR_016024

    This resource has 1+ mentions.

https://github.com/ABCD-STUDY/FIONA-QC-PHANTOM

Software for online quality control operations performed on Phantom MRI data. It checks the accuracy and reproducibility of data.

Proper citation: FIONA-QC-PHANTOM (RRID:SCR_016024) Copy   


https://github.com/ABCD-STUDY/nih-ipad-app-end-point

Data collection software for centrally and securely storing data from the NIH iPad application. It allows users to capture results from multiple iPads at a central location.

Proper citation: nih-ipad-app-end-point (RRID:SCR_016029) Copy   


  • RRID:SCR_016008

https://github.com/ABCD-STUDY/redcap-to-nda

Software for metadata-driven electronic data capture to export REDCap data dictionaries and data to the NIMH National Data Archive (NDA). Prepares data submissions as csv formatted spreadsheets for data dictionary spreadsheets and for data spreadsheets.

Proper citation: redcap-to-nda (RRID:SCR_016008) Copy   


  • RRID:SCR_016908

    This resource has 10+ mentions.

http://prosightlite.northwestern.edu/

Software application for matching a single candidate protein sequence and its modifications against a set of mass spectrometric observations. Used to analyze top-down mass spectrometry data.

Proper citation: ProSight Lite (RRID:SCR_016908) Copy   


  • RRID:SCR_016739

    This resource has 10+ mentions.

https://github.com/hakyimlab/PrediXcan

Software tool to detect known and novel genes associated with disease traits and provide insights into the mechanism of these associations. Used to test the molecular mechanisms through which genetic variation affects phenotype.

Proper citation: PrediXcan (RRID:SCR_016739) Copy   


  • RRID:SCR_017443

    This resource has 1+ mentions.

http://neuroproteomics.scs.illinois.edu/microMS.htm

Software Python platform for image guided Mass Spectrometry profiling. Provides graphical user interface for automatic cell finding and point based registration from whole slide images. Simplifies single cell analysis with feature rich image processing.

Proper citation: microMS (RRID:SCR_017443) Copy   


http://www.ctalearning.com/

A searchable, keyword-indexed bibliography on conditioned taste aversion learning, the avoidance of fluids and foods previously associated with the aversive effects of a variety of drugs. The database includes articles as early as 1951, and papers just published given that the database is ongoing and constantly updated. In the mid 1950''s, John Garcia and his colleagues at the Radiological Defense Laboratory at Hunters Point in San Francisco assessed the effects of ionizing radiation on a myriad of behaviors in the laboratory rat. One of their behavioral findings was that radiated rats avoided consumption of solutions that had been present during radiation, presumably due to the association of the taste of the solution with the aversive effects of the radiation. These results were published in Science and introduced to the literature the phenomenon of conditioned taste aversion learning (or the Garcia Effect). Subsequently, Garcia and his colleagues demonstrated that such learning appeared unique in a number of respects, including the fact that these aversions were acquired often in a single conditioning trial, selectively to gustatory stimuli and even when long delays were imposed between access to the solution and administration of the aversive agent. Together, these unique characteristics appeared to violate the basic tenets of traditional learning theory and along with a number of other behavioral phenomena (e.g., bird song learning, species-specific defense reactions, tonic immobility and schedule-induced polydipsia) introduced the concept of biological constraints on learning that forced a reconceptualization of the role evolution played in the acquisition of behavior (Garcia and Ervin, 1968; Revusky and Garcia, 1970; Rozin and Kalat, 1971). Although the initial investigations into conditioned taste aversion learning focused on these biological and evolutionary issues and their relation to learning, research in this area soon assessed the basic generality of the phenomenon, specifically, under what conditions such learning did or did not occur. With such research, a wide variety of gustatory stimuli were reported as effective conditioned stimuli and an extensive list of drugs with diverse consequences were reported as effective aversion-inducing agents. Aversions were established in a range of strains and species and under many experimental conditions. Research in this area continues to extend the conditions under which such learning occurs and to demonstrate its biological, neurochemical and anatomical substrates. Although the conditions under which aversion learning are reported to occur appear to generalize from the specific conditions under which they were originally reported, a number of factors including sex, age, training and testing procedures, deprivation level and drug history, all affect the rate of its acquisition and its terminal strength (Riley, 1998). In addition to these experimental demonstrations and assessments of generality, research on conditioned taste aversions has expanded to include investigations into its research and clinical applications (Braveman and Bronstein, 1985). In so doing, taste aversion learning has been applied to the characterization and classification of drug toxicity, the demonstration of the stimulus properties of abused drugs, the management of wildlife predation, the assessment of the etiology and treatment of cancer anorexia, the study of the biochemistry and molecular biology of learning, the etiology and control of alcohol use and abuse, the receptor characterization of the motivational effects of drugs, the occurrence of drug interactions, the characterization of drug withdrawal, the determination of taste psychophysics, the treatment of autoimmune diseases and the evaluation of the role of malaise in drug-induced satiety and drug-induced behavioral deficits. The speed with which aversions are acquired and the relative robustness of this preparation have made conditioned taste aversion learning a widely used, highly replicable and sensitive tool. In 1976, we published the first of three bibliographies on conditioned taste aversion learning. In this initial publication (see Riley and Baril, 1976), we listed and annotated 403 papers in this field. Subsequent lists published in 1977 (Riley and Clarke, 1977) and 1985 (Riley and Tuck, 1985) listed 632 and 1373 papers, respectively. Since that time, we have maintained a bibliography on taste aversion learning utilizing a variety of journal and on-line searches as well as benefiting from the generous contribution of preprints, reprints and pdf files from many colleagues. To date, the number of papers on conditioned taste aversion learning is approaching 3000. The present database lists these papers and provides a mechanism for searching the articles according to a number of search functions. Specifically, it was constructed to provide the reader access to these articles via a variety of search terms, including Author(s), Key Words, Date, Article Title and Journal. One can search for single or multiple items within any specific category. Further, one can search a single or combination of categories. The database is constantly being updated, and any feedback and suggestions are welcome and can be sent to CTALearning (at) american.edu.

Proper citation: Conditioned Taste Aversion: An Annotated Bibliography (RRID:SCR_005953) Copy   


  • RRID:SCR_017592

    This resource has 1+ mentions.

https://amoebadb.org/amoeba/

Integrated genomic and functional genomic database for Entamoeba and Acanthamoeba parasites. Contains genomes of three Entamoeba species and microarray expression data for E. histolytica. Integrates whole genome sequence and annotation and includes experimental data and environmental isolate sequences provided by community researchers.

Proper citation: AmoebaDB (RRID:SCR_017592) Copy   


  • RRID:SCR_017579

    This resource has 100+ mentions.

https://imputationserver.sph.umich.edu/

Web server to implement whole genotype imputation workflow for efficient parallelization of computationally intensive tasks. Service for imputation that facilitates access to new reference panels and greatly improves user experience and productivity. Used to find haplotype segments and reference panel of sequenced genomes, assign genotypes at untyped markers, improve genome coverage, facilitate comparison and combination of studies that use different marker panels, increase power to detect genetic association, and guide fine mapping.

Proper citation: Michigan Imputation Server (RRID:SCR_017579) Copy   


  • RRID:SCR_018572

    This resource has 1+ mentions.

http://lrpath.ncibi.org/

Web tool to perform gene set enrichment testing. Used to test for predefined biologically relevant gene sets that contain more significant genes from experimental dataset than expected by chance. Logistic regression approach for identifying enriched biological groups in gene expression data.

Proper citation: LRPath (RRID:SCR_018572) Copy   


  • RRID:SCR_018710

    This resource has 10+ mentions.

http://crispr-era.stanford.edu/index.jsp

Software comprehensive design tool for CRISPR mediated gene editing, repression and activation. Fast and comprehensive guide RNA design tool for genome editing, repression and activation. Used for automated genome wide sgRNA design.

Proper citation: CRISPR-ERA (RRID:SCR_018710) Copy   


http://www.drugabuseresearchtraining.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on November 07, 2012. Decemeber 15, 2011 - Thank you for your interest in DrugAbuseResearchTraining.org. The site, courses, and resources are no longer available. Please send an email to inquiry (at) md-inc.com if you would like to be notified if the site or courses become available again. Introduction to Clinical Drug and Substance Abuse Research Methods is an online training program intended to introduce clinicians and substance abuse professionals to basic clinical research methods. The program is divided into four modules. Each module covers an entire topic and includes self-assessment questions, references, and online resources: * The Neurobiology of Drug Addiction * Biostatistics for Drug and Substance Abuse Research * Evaluating Drug and Substance Abuse Programs * Designing and Managing Drug and Substance Abuse Clinical Trials The learning objectives of this program are to help you: * Evaluate the benefits of alternative investigative approaches for answering important questions in drug abuse evaluation and treatment. * Define the proper levels of measurement and appropriate statistical methods for a clinical study. * Address common problems in data collection and analysis. * Anticipate key human subjects and ethical issues that arise in drug abuse studies. * Interpret findings from the drug abuse research literature and prepare a clinical research proposal. * Prepare research findings for internal distribution or publication in the peer reviewed literature. * Recognize drug addiction as a cyclical, chronic disease. * Understand and describe the brain circuits that are affected by addicting drugs, and explain to others the effects of major classes of addicting drugs on brain neurotransmitters. * Utilize new pharmacologic treatments to manage persons with drug addiction. Physicians can earn AMA PRA Category 1 Credit and purchase a high resolution printable electronic CME certificate(view sample); non-physicians can purchase high resolution printable electronic certificate of course participation that references AMA PRA Category 1 credit (view sample). This program does not offer printed certificates.

Proper citation: Online Education for the International Research Community: AboutIntroduction to Clinical Drug and Substance Abuse Research Methods (RRID:SCR_000802) Copy   


https://ratgenes.org/

Portal includes information about genetic studies of drug abuse in outbred rats. Data center created in 2014 to perform genome wide association studies on numerous behavioral traits that have well established relevance to drug abuse using outbred rats.

Proper citation: NIDA center for genetic studies of drug abuse in outbred rats (RRID:SCR_021788) Copy   


  • RRID:SCR_007019

http://www.clairlib.org

A suite of open-source Perl modules intended to simplify a number of generic tasks in natural language processing (NLP), information retrieval (IR), and network analysis (NA). Its architecture also allows for external software to be plugged in with very little effort. The latest version of clairlib is 1.06 which was released on March 2009 and includes about 130 modules implementing a wide range of functionalities. Clairlib is distributed in two forms: * Clairlib-core, which has essential functionality and minimal dependence on external software, and * Clairlib-ext, which has extended functionality that may be of interest to a smaller audience. Much can be done using Clairlib on its own. Some of the things that Clairlib can do are: Tokenization, Summarization, Document Clustering, Document Indexing, Web Graph Analysis, Network Generation, Power Law Distribution Analysis, Network Analysis, RandomWalks on Graphs, Tf-IDF, Perceptron Learning and Classification, and Phrase Based Retrieval and Fuzzy OR Queries.

Proper citation: Clair library (RRID:SCR_007019) Copy   


https://github.com/ABCD-STUDY/pearson-central-end-point

Data collection software as an end-point for centrally storing data from the Pearsons Q-Interactive.

Proper citation: pearson-central-end-point (RRID:SCR_016034) Copy   


https://github.com/ABCD-STUDY/redcap-hook-framework

Software tool to organize and deploy custom hooks in a single project or across the entire instance. It features multi-language support for data entry and survey pages, a bar-code for text fields, and highlighting of rows on data entry and survey pages that have been filled out.

Proper citation: redcap-hook-framework (RRID:SCR_016028) Copy   


http://www.nihpromis.org/

Repository of person centered measures that evaluates and monitors physical, mental, and social health in adults and children.

Proper citation: Patient-Reported Outcomes Measurement Information System (RRID:SCR_004718) Copy   


  • RRID:SCR_006896

    This resource has 1+ mentions.

http://zfishbook.org/

Collection of revertible protein trap gene-breaking transposon (GBT) insertional mutants in zebrafish with active or cryopreserved lines from initially identified lines. Open to community-wide contributions including expression and functional annotation and represents world-wide central hub for information on how to obtain these lines from diverse members of International Zebrafish Protein Trap Consortium (IZPTC) and integration within other zebrafish community databases including Zebrafish Information Network (ZFIN), Ensembl and National Center for Biotechnology Information. Registration allows users to save their favorite lines for easy access, request lines from Mayo Clinic catalog, contribute to line annotation with appropriate credit, and puts them on optional mailing list for future zfishbook newletters and updates.

Proper citation: zfishbook (RRID:SCR_006896) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X