Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Database of protein-ligand crystal structures that is a subset of the Protein Data Bank (PDB), containing every high-quality example of ligand-protein binding. The resolved protein crystal structures with clearly identified biologically relevant ligands are annotated with experimentally determined binding data extracted from literature. A viewer is provided to examine the protein-ligand structures. Ligands have additional chemical data, allowing for cheminformatics mining. The binding-affinity data ranges 13 orders of magnitude. The issue of redundancy in the data has also been addressed. To create a nonredundant dataset, one protein from each of the 1780 protein families was chosen as a representative. Representatives were chosen by tightest binding, best resolution, etc. For the 1780 best complexes that comprise the nonredundant version of Binding MOAD, 475 (27%) have binding data. This collection of protein-ligand complexes will be useful in elucidating the biophysical patterns of molecular recognition and enzymatic regulation. The complexes with binding-affinity data will help in the development of improved scoring functions and structure-based drug discovery techniques.
Proper citation: Binding MOAD (RRID:SCR_002294) Copy
http://edas2.bioinf.fbb.msu.ru/
Databases of alternatively spliced genes with data on the alignment of proteins, mRNAs, and EST. It contains information on all exons and introns observed, as well as elementary alternatives formed from them. The database makes it possible to filter the output data by changing the cut-off threshold by the significance level. It contains splicing information on human, mouse, dog (not yet functional) and rat (not yet functional). For each database, users can search by keyword or by overall gene expression. They can also view genes based on chromosomal arrangement or other position in genome (exon, intron, acceptor site, donor site), functionality, position, conservation, and EST coverage. Also offered is an online Fisher test.
Proper citation: EDAS - EST-Derived Alternative Splicing Database (RRID:SCR_002449) Copy
http://bioinf.gen.tcd.ie/casbah/
Database which contains information pertaining to all currently known caspase substrates.
Proper citation: CASBAH (RRID:SCR_002728) Copy
An integrative interaction database that integrates different types of functional interactions from heterogeneous interaction data resources. Physical protein interactions, metabolic and signaling reactions and gene regulatory interactions are integrated in a seamless functional association network that simultaneously describes multiple functional aspects of genes, proteins, complexes, metabolites, etc. With human, yeast and mouse complex functional interactions, it currently constitutes the most comprehensive publicly available interaction repository for these species. Different ways of utilizing these integrated interaction data, in particular with tools for visualization, analysis and interpretation of high-throughput expression data in the light of functional interactions and biological pathways is offered.
Proper citation: ConsensusPathDB (RRID:SCR_002231) Copy
http://fullmal.hgc.jp/index_ajax.html
FULL-malaria is a database for a full-length-enriched cDNA library from the human malaria parasite Plasmodium falciparum. Because of its medical importance, this organism is the first target for genome sequencing of a eukaryotic pathogen; the sequences of two of its 14 chromosomes have already been determined. However, for the full exploitation of this rapidly accumulating information, correct identification of the genes and study of their expression are essential. Using the oligo-capping method, this database has produced a full-length-enriched cDNA library from erythrocytic stage parasites and performed one-pass reading. The database consists of nucleotide sequences of 2490 random clones that include 390 (16%) known malaria genes according to BLASTN analysis of the nr-nt database in GenBank; these represent 98 genes, and the clones for 48 of these genes contain the complete protein-coding sequence (49%). On the other hand, comparisons with the complete chromosome 2 sequence revealed that 35 of 210 predicted genes are expressed, and in addition led to detection of three new gene candidates that were not previously known. In total, 19 of these 38 clones (50%) were full-length. From these observations, it is expected that the database contains approximately 1000 genes, including 500 full-length clones. It should be an invaluable resource for the development of vaccines and novel drugs. Full-malaria has been updated in at least three points. (i) 8934 sequences generated from the addition of new libraries added so that the database collection of 11,424 full-length cDNAs covers 1375 (25%) of the estimated number of the entire 5409 parasite genes. (ii) All of its full-length cDNAs and GenBank EST sequences were mapped to genomic sequences together with publicly available annotated genes and other predictions. This precisely determined the gene structures and positions of the transcriptional start sites, which are indispensable for the identification of the promoter regions. (iii) A total of 4257 cDNA sequences were newly generated from murine malaria parasites, Plasmodium yoelii yoelii. The genome/cDNA sequences were compared at both nucleotide and amino acid levels, with those of P.falciparum, and the sequence alignment for each gene is presented graphically. This part of the database serves as a versatile platform to elucidate the function(s) of malaria genes by a comparative genomic approach. It should also be noted that all of the cDNAs represented in this database are supported by physical cDNA clones, which are publicly and freely available, and should serve as indispensable resources to explore functional analyses of malaria genomes. Sponsors: This database has been constructed and maintained by a Grant-in-Aid for Publication of Scientific Research Results from the Japan Society for the Promotion of Science (JSPS). This work was also supported by a Special Coordination Funds for Promoting Science and Technology from the Science and Technology Agency of Japan (STA) and a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan.
Proper citation: Full-Malaria: Malaria Full-Length cDNA Database (RRID:SCR_002348) Copy
http://www.ncbi.nlm.nih.gov/RefSeq/
Collection of curated, non-redundant genomic DNA, transcript RNA, and protein sequences produced by NCBI. Provides a reference for genome annotation, gene identification and characterization, mutation and polymorphism analysis, expression studies, and comparative analyses. Accessed through the Nucleotide and Protein databases.
Proper citation: RefSeq (RRID:SCR_003496) Copy
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/
Compendium of protein fingerprints. Diagnostic fingerprint database.
Proper citation: PRINTS (RRID:SCR_003412) Copy
http://www.ncbi.nlm.nih.gov/taxonomy/
Database for a curated classification and nomenclature that contains the names of all organisms that are represented in the public sequence databases with at least one nucleotide or protein sequence. Data provided encompasses archaea, bacteria, eukaryota, viroids and viruses. The NCBI taxonomy database is not a primary source for taxonomic or phylogenetic information. Furthermore, the database does not follow a single taxonomic treatise but rather attempts to incorporate phylogenetic and taxonomic knowledge from a variety of sources, including the published literature, web-based databases, and the advice of sequence submitters and outside taxonomy experts. Consequently, the NCBI taxonomy database is not a phylogenetic or taxonomic authority and should not be cited as such.
Proper citation: NCBI Taxonomy (RRID:SCR_003256) Copy
Database that provides experimentally determined thermodynamic interaction data between proteins and nucleic acids. It contains the properties of the interacting protein and nucleic acid, bibliographic information and several thermodynamic parameters such as the binding constants, changes in free energy, enthalpy and heat capacity.
Proper citation: ProNIT (RRID:SCR_003431) Copy
http://www.fli-leibniz.de/IMAGE.html
Database aimed at disseminating information on three-dimensional biopolymer structures with an emphasis on visualization and analysis. It provides access to all structure entries deposited at the Protein Data Bank (PDB) or at the Nucleic Acid Database (NDB). In addition, basic information on the architecture of biopolymer structures is available. The JenaLib intends to fulfill both scientific and educational needs. Authors who are willing to make available images or coordinates to the scientific community via the Image Library of Biological Macromolecules are requested to contact the author. A PDB/SWISS-PROT cross-reference database combines information from both PDB and SWISS-PROT, thus providing significantly more cross-references than either PDB or SWISS-PROT. The existing brief descriptions of X-ray, NMR and FTIR methods for structure determination are supplemented by information on circular dichroism.
Proper citation: Jenalib: Jena Library of Biological Macromolecules (RRID:SCR_003031) Copy
http://bioinfo.mbi.ucla.edu/ASAP/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on 8/12/13. Database to access and mine alternative splicing information coming from genomics and proteomics based on genome-wide analyses of alternative splicing in human (30 793 alternative splice relationships found) from detailed alignment of expressed sequences onto the genomic sequence. ASAP provides precise gene exon-intron structure, alternative splicing, tissue specificity of alternative splice forms, and protein isoform sequences resulting from alternative splicing. They developed an automated method for discovering human tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs), which involves classifying human EST libraries according to tissue categories and Bayesian statistical analysis. They use the UniGene clusters of human Expressed Sequence Tags (ESTs) to identify splices. The UniGene EST's are clustered so that a single cluster roughly corresponds to a gene (or at least a part of a gene). A single EST represents a portion of a processed (already spliced) mRNA. A given cluster contains many ESTs, each representing an outcome of a series of splicing events. The ESTs in UniGene contain the different mRNA isoforms transcribed from an alternatively spliced gene. They are not predicting alternative splicing, but locating it based on EST analysis. The discovered splices are further analyzed to determine alternative splicing events. They have identified 6201 alternative splice relationships in human genes, through a genome-wide analysis of expressed sequence tags (ESTs). Starting with 2.1 million human mRNA and EST sequences, they mapped expressed sequences onto the draft human genome sequence and only accepted splices that obeyed the standard splice site consensus. After constructing a tissue list of 46 human tissues with 2 million human ESTs, they generated a database of novel human alternative splices that is four times larger than our previous report, and used Bayesian statistics to compare the relative abundance of every pair of alternative splices in these tissues. Using several statistical criteria for tissue specificity, they have identified 667 tissue-specific alternative splicing relationships and analyzed their distribution in human tissues. They have validated our results by comparison with independent studies. This genome-wide analysis of tissue specificity of alternative splicing will provide a useful resource to study the tissue-specific functions of transcripts and the association of tissue-specific variants with human diseases.
Proper citation: ASAP: the Alternative Splicing Annotation Project (RRID:SCR_003415) Copy
http://www.grt.kyushu-u.ac.jp/spad/
It is divided to four categories based on extracellular signal molecules (Growth factor, Cytokine, and Hormone) and stress, that initiate the intracellular signaling pathway. SPAD is compiled in order to describe information on interaction between protein and protein, protein and DNA as well as information on sequences of DNA and proteins. There are multiple signal transduction pathways: cascade of information from plasma membrane to nucleus in response to an extracellular stimulus in living organisms. Extracellular signal molecule binds specific intracellular receptor, and initiates the signaling pathway. Now, there is a large amount of information about the signaling pathway which controls the gene expression and cellular proliferation. We have developed an integrated database SPAD to understand the overview of signaling transduction.
Proper citation: Signaling Pathway Database (RRID:SCR_008243) Copy
http://escience.invitrogen.com/ipath/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 26, 2016. LINNEA Pathways is a user-friendly comprehensive online resource for gene- or protein-based scientific research. It is based on a total of 248 signaling and metabolic human biological pathway maps created for Invitrogen by GeneGo. The current version of iPath features 225 maps displaying human regulatory and metabolic pathways established in experimental literature produced by MetaCore from GeneGo, Inc. The map objects (proteins, genes, EC functions, and compounds) are connected via metabolic transformations and physical protein interactions, which were assembled by the GeneGo team of experienced annotators, geneticists, and biochemists. The pathways are organized in a vertical fashion following the general signaling path from signaling molecules and membrane receptors, via signal transduction cascades, to transcription factors and their gene targets. Following the natural organization of cellular machinery with highly interconnected pathways and modules, many maps are linked together via hyperlinked box symbols. Such linkage allows the reconstruction of a big picture view of human cell biology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Invitrogen iPath (RRID:SCR_008120) Copy
ITFP is an integrated transcription factor (TF) platform, which included abundant TFs and targets message of mammalian. Support vector machine (SVM) algorithm combined with error-correcting output coding (ECOC) algorithm was utilized to identify and classify transcription factor from protein sequence of Human, Mouse and Rat. For transcription factor targets, a reverse engineering method named ARACNE was used to derive potential interaction pairs between transcription factor and downstream regulated gene from Human, Mouse and Rat gene expression profile data. Detailed information of gene expression profile data can be found in help page. Moreover, all data provided by the platform is free for non-commercial users and can be downloaded through links on help page.
Proper citation: Intergrated Transcription Factor Platform (RRID:SCR_008119) Copy
iRefWeb is an interface to a relational database containing the latest build of the interaction Reference Index (iRefIndex) which integrates protein interaction data from nine different interaction databases: BioGRID, BIND, CORUM, DIP, HPRD, INTACT, MINT, MPPI, MPACT and OPHID. Integration is achieved through a rigorously documented procedure for mapping protein IDs across databases, enabling systematic backtracking of the links used to establish the identity of the interaction partners. The iRefWeb interface groups interaction records from the different databases into a single non-redundant view. In particular iRefWeb facilitates comparing interaction records as seen by the various source databases relative to the PubMeds they were annotated from. iRefWeb is one of several views of the iRefIndex resource. Data are also available in a tab-delimited plain-text format (PSI-MITAB) as well as planned releases of a PSI-XML formatted version and a Cytoscape plugin. Further details about the iRefIndex project as well as data downloads are available from here . The method used to build iRefIndex is described in a recent publication.
Proper citation: Interaction Reference Index Web Interface (RRID:SCR_008118) Copy
A horizontally and vertically structured database that pulls scientific and medical information and describes it consistently using the Ingenuity Ontology. The Knowledge Base pulls information from journals, public molecular content databases, and textbooks. Data is curated and and integrated into the Knowledge Base .
Proper citation: Ingenuity Pathways Knowledge Base (RRID:SCR_008117) Copy
http://www.ebi.ac.uk/ipd/mhc/bola/
This website is intended to be the definitive source of information on the bovine major histocompatibility complex - its genes, proteins and polymorphism. Its purpose is to collate data on the Bovine Leucocyte Antigens (BoLA) and provide a forum for the analysis and nomenclature of polymorphisms in the genes and proteins of the bovine MHC. The BoLA nomenclature committee is a standing committee of the International Society for Animal Genetics. Its purpose is to collate data on the Bovine Leucocyte Antigens (BoLA) and provide a forum for the analysis and nomenclature of polymorphisms in the genes and proteins of the bovine MHC. The information gathered here is based on the BoLA workshop reports, which are published in Animal Genetics and the European Journal of Immunogenetics. The workshop report data are reproduced with the permission of the publishers Blackwell Science, and other text on the site is used with the permission of CRC Press.
Proper citation: BoLA Nomenclature: International Society for Animal Genetics (RRID:SCR_008142) Copy
The MIPS mammalian protein-protein interaction database (MPPI) is a new resource of high-quality experimental protein interaction data in mammals. The content is based on published experimental evidence that has been processed by human expert curators. It is a collection of manually curated high-quality PPI data collected from the scientific literature by expert curators. We took great care to include only data from individually performed experiments since they usually provide the most reliable evidence for physical interactions. To suit different users needs we provide a variety of interfaces to search the database: -Expert interface Simple but powerful boolean query language. -PPI search form Easy to use PPI search -Protein search Just find proteins of interest in the database Sponsors: This work is funded by a grant from the German Federal Ministry of Education and Research.
Proper citation: MIPS Mammalian Protein-Protein Interaction Database (RRID:SCR_008207) Copy
http://mips.helmholtz-muenchen.de/genre/proj/mpcdb/
A database of manually annotated mammalian protein complexes. To obtain a high-quality dataset, information was extracted from individual experiments described in the scientific literature. Data from high-throughput experiments was not included.
Proper citation: Mammalian Protein Complex Data Base (RRID:SCR_008209) Copy
http://locustdb.genomics.org.cn/
The migratory locust (Locusta migratoria) is an orthopteran pest and a representative member of hemimetabolous insects. Its transcriptomic data provide invaluable information for molecular entomology study of the insect and pave a way for comparative studies of other medically, agronomically, and ecologically relevant insects. This first transcriptomic database of the locust (LocustDB) has been developed, building necessary infrastructures to integrate, organize, and retrieve data that are either currently available or to be acquired in the future. It currently hosts 45,474 high quality EST sequences from the locust, which were assembled into 12,161 unigenes. This database contains original sequence data, including homologous/orthologous sequences, functional annotations, pathway analysis, and codon usage, based on conserved orthologous groups (COG), gene ontology (GO), protein domain (InterPro), and functional pathways (KEGG). It also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. LocustDB also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. It starts with the first transcriptome information for an orthopteran and hemimetabolous insect and will be extended to provide a framework for incorporation of in-coming genomic data of relevant insect groups and a workbench for cross-species comparative studies.
Proper citation: Migratory Locust EST Database (RRID:SCR_008201) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.