Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
The Brain Tumor Action Network is a not-for-profit 501(c)(3) organization established to bring awareness to the general public about brain tumors and to educate and empower brain tumor survivors, their families and friends. We foster grassroots advocacy on federal and state legislative issues affecting brain tumor survivors, their families and friends by providing information on brain tumor-related public issues and effective advocacy. BTAN has the following goals: * To encourage those living with brain tumors, their families and friends to become advocates for brain tumor awareness. * To foster grassroots advocacy on federal and state legislative issues affecting brain tumor survivors, their families and friends by providing information (and training) on brain tumor related public issues and effective advocacy. * To work independently and in collaboration with other brain tumor related organizations on behalf of the brain tumor community family. * To increase brain tumor awareness nationally through the Hidden Under Our Hats, National Brain Tumor Awareness Project in Washington, DC and at various treatment centers, conferences and fund raisers. * To raise funds to support specific research projects. * To create a PILOT respite care program for brain tumor survivors and their families at Moffitt Cancer Center & Research Institute (Tampa, FL). The respite care fund would assist brain tumor patients and their family members with additional care and support from home health care workers.
Proper citation: Brain Tumor Action Network (RRID:SCR_004733) Copy
http://www.pencerbraintrust.com/
The Gerry & Nancy Pencer Brain Trust is a not-for-profit organization with a mandate to make a difference in the quality of life of people living with brain tumors. This registered charity is the primary source of funding for The Gerry & Nancy Pencer Brain Tumor Centre, and carries out annual fundraising events to support its'' ongoing research and patient care activities. The Gerry & Nancy Pencer Brain Tumor Centre is located in Toronto, Canada at the world-renowned Princess Margaret Hospital. The Centre provides multidisciplinary care, treatment, support, and education for brain tumor patients and their families, and promotes brain tumor research in the hopes of one day finding a cure for brain cancer. All of this is made possible through your very generous donations.
Proper citation: Gerry and Nancy Pencer Brain Trust (RRID:SCR_004762) Copy
The Pediatric Brain Tumor Foundation (PBTF) is a nonprofit organization dedicated to eradicating childhood brain tumors and providing support to families. It is a 501(c)(3) nonprofit charitable organization that seeks to * find the cause of and cure for childhood brain tumors by supporting medical research * increase public awareness about the severity and prevalence of childhood brain tumors * aid in the early detection and treatment of childhood brain tumors * support a national database on all primary brain tumors * provide educational and emotional support for children and families affected by this life-threatening disease. As the world''s largest non-governmental source of funding for childhood brain tumor research, we''re dedicated to not only eradicating this disease, but to providing support to families. Our educational resources deliver comfort and hope to families in need of information, and our college scholarship program gives brain tumor survivors a boost for the future. Through our efforts to raise public awareness, more attention has been focused on this deadly disease. Whether addressing congressional briefings or funding international conferences, the PBTF is an unwavering advocate. Together, we''re making a difference in the lives of children with brain tumors. And with your continued help, we will cure the kids!
Proper citation: Pediatric Brain Tumor Foundation (RRID:SCR_004755) Copy
The Oklahoma Brain Tumor Foundation (OKBTF) is a nonprofit organization that provides education, advocacy and support for Oklahomans with brain tumors and their families to improve their quality of life and help find a cure. Founded by Nancy Thomason after the death of her son Cade Thomason to a brain stem PNET tumor on February 17, 2000, she vowed to fight the disease in honor and memory of her son Cade. OKBTF is dedicated to meeting the needs of Oklahoma families, caregivers and patients affected by primary brain or central nervous system tumors. We work to provide for needs through education, advocacy, research and service. Whatever your needs, whether financial, physical, mental or spiritual, we will work with you to fight the battle. Here you will find many of the services we offer in support of families just like yours, who are confused, hurting and just wanting straight answers. Feel free to browse around, get to know us, see what we are doing to help and send us your comments or questions... We are here for you.
Proper citation: Oklahoma Brain Tumor Foundation (RRID:SCR_004748) Copy
A biomaterial supply resource which collects, stores, and distributes donated tissue to research scientists around the world. Collection occurs through the an anatomical donor program which accepts tissue donation from people with neurological/ psychiatric disorders. The Center also provides a continuous boost to biomedical research by providing high quality and quantity of pre- and post-mortem brains, spinal cords, cerebrospinal fluid (CSF), serum, blood cells and urine to use in investigations of neurological and psychiatric diseases. Scientists without a clinical site may use the Center''s readily available, high quality banked specimens.
Proper citation: Human Brain and Spinal Fluid Resource Center (RRID:SCR_004811) Copy
http://www.brainsciencepodcast.com/
Podcast, hosted by Dr. Ginger Campbell, featuring the latest books about neuroscience as well as interviews with leading scientists from around the world. In this podcast, she shares recent discoveries from the world of neuroscience in a way that people of all backgrounds can enjoy. Dr. Campbell is an experienced emergency physician with a long-standing interest in mind-body medicine, the brain, and consciousness. She believes that understanding how the brain works gives us insight into what makes us human. She is also committed to showing how the scientific method has unraveled many long-standing mysteries. Brain Science Transcripts are also available.
Proper citation: Brain Science Podcast (RRID:SCR_004491) Copy
Portal and tools for sharing and editing neurophysiological and behavioral data for brain-machine interface research. Users can search for existing data or login with their Google, Facebook, or Twitter account and upload new data. Their main focus is on supporting brain-machine interface research, so we encourage users to not just provide recordings of brain activity data, but also information about stimuli, etc., so that statistical relationships can be found between stimuli and/or subject behavior and brain activity. The Matlab tools are for writing, reading, and converting Neuroshare files, the common file format. A free, open source desktop tool for editing neurophysiological data for brain-machine interface research is also available: https://github.com/ATR-DNI/BrainLiner Since data formats aren''''t standardized between programs and researchers, data and analysis programs for data cannot be easily shared. Neuroshare was selected as the common file format. Neuroshare can contain several types of neurophysiological data because of its high flexibility, including analog time-series data and neuronal spike timing. Some applications have plug-ins or libraries available that can read Neuroshare format files, thus making Neuroshare somewhat readily usable. Neuroshare can contain several types of neurophysiological data, but there were no easy tools to convert data into the Neuroshare format, so they made and are providing a Neuroshare Converter Library and Simple Converter using the library. In future work they will make and provide many more useful tools for data sharing. Shared experiments include: EMG signal, Takemiya Exp, Reconstruct (Visual image reconstruction from human brain activity using a combination of multi-scale local image decoders), SPIKE data, Speech Imagery Dataset (Single-trial classification of vowel speech imagery using common spatial patterns), Functional Multineuron Calcium Imaging (fMCI), Rock-paper-scissors (The data was obtained from subject while he make finger-form of rock/paper/scissors). They also have a page at https://www.facebook.com/brainliner where you can contact us
Proper citation: BrainLiner (RRID:SCR_004951) Copy
http://spot.colorado.edu/~dubin/talks/brodmann/brodmann.html
Reference atlas of Brodmann Areas in the Human Brain with an Emphasis on Vision and Language. Other Pages include: Flat Brodmann Maps, Brodmann Area Names (with locational Descriptions), Flat Visual Area Maps, Language Areas, PopUp Gyri Maps
Proper citation: Brodmann Areas in the Human Brain with an Emphasis on Vision and Language (RRID:SCR_004857) Copy
http://www.med.umkc.edu/psychiatry/nbtb/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. The UMKC Neuroscience Brain Tissue Bank and Research Laboratory has been established to obtain, process, and distribute human brain tissue to qualified scientists and clinicians dedicated to neuroscience research. No other living organ approaches the human brain in complexity or capacity. Healthy, it astounds and inspires miracles. Diseased, it confounds and diminishes hope. The use of human brain tissue for research will provide insight into the anatomical and neurochemical aspects of diseased and non-diseased brains. While animal models are helpful and necessary in understanding disease, certain disorders can be more efficiently studied using human brain tissue. Also, modern research techniques are often best applied to human tissue. We also need samples of brain tissue that have not been affected by disease. They help us to compare a 'normal' brain with a diseased one. Also, we have a critical need for brain donations from relatives who have genetically inherited disorders. Tissue preparation consists of fresh quick-frozen tissue blocks or coronal slices (nitrogen vapor frozen; custom dissection of specific anatomic regions) or formalin-fixed coronal slices (custom dissection of specific anatomic regions).
Proper citation: UMKC Neuroscience Brain Tissue Bank and Research Laboratory (RRID:SCR_005148) Copy
http://www.tnp.pitt.edu/pages/donationfrm_mb.htm
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 19,2024. Brain tissue donation is a valuable contribution to mental health research. It enables scientists to investigate how the normal brain works, and how the brain is disturbed when it is affected by schizophrenia, depression, bipolar (manic depressive) disease or other related disorders. The Department of Psychiatry at the University of Pittsburgh has established a brain tissue bank to which brain tissue can be donated at no expense. The gift of brain tissue enables scientists to conduct research designed to understand causes, to develop new treatments, and ultimately to find cures for diseases that affect the brain. Brain tissue donation is a gift that makes it possible for researchers to study various types of mental disorders. Donations of brain tissue from individuals without these disorders are also needed to establish comparisons with brain samples from individuals who have these disorders. Any legally competent adult or guardian may indicate during life their interest in donating brain tissue after death. Next-of-kin either of healthy individuals or of those with psychiatric disorders may give consent to donate brain tissue following the death of a loved one. Brain tissue is removed during autopsy at a morgue or hospital and is transported to the University of Pittsburgh Medical Center for examination and study.
Proper citation: University of Pittsburgh Brain Tissue Donation Program (RRID:SCR_005028) Copy
https://adrc.mc.duke.edu/index.php/research/brain-bank
A research repository of human brains with neurological disorders and normal controls, recruited through the Autopsy and Brain Donation Program coordinator. The Kathleen Price Bryan Brain Bank contains brains from patients with Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Muscular Dystrophy, and other neurological and dementing disorders. The brain tissue is subjected to a detailed neuropathological evaluation and then stored as fixed and frozen hemispheres, paraffin blocks and histological slides. After receipt of an IRB approved request, tissue is supplied to investigators at Duke University, major medical centers and pharmaceutical companies across the United States and worldwide.
Proper citation: Duke University Kathleen Price Bryan Brain Bank (RRID:SCR_005022) Copy
http://glioblastoma.alleninstitute.org/
Platform for exploring the anatomic and genetic basis of glioblastoma at the cellular and molecular levels that includes two interactive databases linked together by de-identified tumor specimen numbers to facilitate comparisons across data modalities: * The open public image database, here, providing in situ hybridization data mapping gene expression across the anatomic structures inherent in glioblastoma, as well as associated histological data suitable for neuropathological examination * A companion database (Ivy GAP Clinical and Genomic Database) offering detailed clinical, genomic, and expression array data sets that are designed to elucidate the pathways involved in glioblastoma development and progression. This database requires registration for access. The hope is that researchers all over the world will mine these data and identify trends, correlations, and interesting leads for further studies with significant translational and clinical outcomes. The Ivy Glioblastoma Atlas Project is a collaborative partnership between the Ben and Catherine Ivy Foundation, the Allen Institute for Brain Science and the Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment.
Proper citation: Ivy Glioblastoma Atlas Project (RRID:SCR_005044) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. The Laboratory of Experimental Neuropathology is engaged in the study of neurodegenerative disease, including Alzheimer's, Parkinson's, and the dementia of HIV encephalitis. It contains a large bank of materials available to fellow investigators including images, publications, and lab safety. Fellow Investigators and Collaborators may request materials from the brain bank. Technologies employed by the laboratory include immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy.
Proper citation: UCSD Experimental Neuropath Laboratory (RRID:SCR_004906) Copy
Portal touching on all aspects of neuroscience from molecules to the mind, from the laboratory bench to the patient's bedside. Members study the normal structure and workings of the nervous system, its development, its cognitive functions, its derangement by disease and injury, and the means of its repair and protection. Projects span traditional disciplinary boundaries, as do graduate and postdoctoral training programs. Its major achievement has been to foster and improve multidisciplinary collaborations which has increasingly permitted the identification of pathogenic mechanisms and the formulation of new therapeutic approaches.
Proper citation: Brain Research Institute (RRID:SCR_004988) Copy
Neuron Navigator (NNG) integrates a 3D neuron image database into an easy-to-use visual interface. Via a flexible and user-friendly interface, NNG is designed to help researchers analyze and observe the connectivity within the neural maze and discover possible pathways. With NNG''s 3D neuron image database, researchers can perform volumetric searches using the location of neural terminals, or the occupation of neuron volumes within the 3D brain space. Also, the presence of the neurons under a combination of spatial restrictions can be shown as well. NNG is a result of a multi-discipline collaboration between neuroscientists and computer scientists, and NNG has now been implemented on a coordinated brain space for the Drosophila (fruit fly) brain. Account is required.
Proper citation: Neuron Navigator (RRID:SCR_005063) Copy
There are a lot of fine blogs out there covering the avalance of current neuroscience research. With this blog Thomas Rams��y & Martin Skov want to highlight the many consequences of this growing understanding of the human brain. We are especially interested in two types of consequences: Tinkering with the brain and What is it like to be a human being? * Tinkering with the brain: First and foremost, with an understanding of how the brain works comes the possibility of tinkering with it. We already use billions of dollars every year on psychopharmocologia trying to treat depression, schizophrenia, obsessive-compulsive disorder and other mental diseases. But should we also use our knowledge of the brain to treat undesirable mental traits such as pedophilia or sociopathy? And what about enhancing normal brains? Clearly, evolution hasn''t endowed us with the most efficient brain imaginable. Shouldn''t we do something about its many shortcomings? * What is it like to be a human being?: Secondly, our view of human behavior is sure to change with our improved understanding of the human brain. Our knowledge of core human faculties such as language, social reasoning, aesthetics, and economics is already being challenged by modern neuroscience, yielding multiple hard questions. Do we have a free will? Is the mind innate or plastic? If people are not responsible for their actions (since all actions are caused by blind molecular processes) does our legal system still make sense? In short, will modern neuroscience come to completely redefine human nature? We try to discuss contemporary research literature, not just news reports. Although we will occasionally also target popular science reports, since we believe they play an important role in dissemining lessons from the lab. And in the future we plan to also post interviews with interesting researchers, as well as link to our own publications in journals and books. Additionally, the latest and most important books in the multidisciplinary field of neuroscience, cognition, psychology, ethics and economics are presented.
Proper citation: BrainEthics (RRID:SCR_005530) Copy
http://hnrc.hivresearch.ucsd.edu/
The mission of the HIV Neurobehavioral Research Center (HNRC) is to increase our understanding of how HIV and other diseases affect the human nervous system. The HNRC conducts local, national, and international research devoted to advancing our knowledge of the prevention, diagnosis and treatment of HIV-related diseases as they affect the brain and nervous system, and result in impairment of everyday functioning. Research areas of the Center include: - The incidence, prevalence, and features of neurocognitive impairment caused by HIV - The attributes of the virus, host, and host-virus interactions that determine the presentation of HIV-associated neurocognitive disorders - Possible molecular and cellular mechanisms of nervous system impairment, including the mechanisms by which host-virus factors generate neural injury and neurobehavioral disorders - The cerebrospinal fluid (CSF) as a window on CNS events * The role of co-pathogens and comorbidities in neuroAIDS (e.g., hepatitis C infection, methamphetamine abuse) - Real life implications of neurocognitive impairment in terms of work, daily life, and survival - The effects of HIV disease and neurocognitive impairment on family and social adaptation - NeuroAIDS in resource limited settings - Treatments for neurocognitive impairment and behavioral interventions HNRC also has a Developmental Grants Program (DGP), the primary goal of which is the initiation of innovative studies by junior faculty and trainees at UCSD or affiliated institutions with the following objectives: 1. Recruitment to neuroAIDS research of new investigators or established investigators without prior experience in the field; 2. Generation and pilot testing of new research initiatives; 3. Fostering collaboration among investigators from throughout Southern California. The program provides to qualified investigators and trainees any appropriate combination of the following forms of support: 1. Small, 1-2 year grants to support pilot studies; 2. Access to HNRC core resources such as data, specimens, participants, equipment, administrative support, or expert consultation and technical assistance. Lastly, The the NHRC Mentored Investigator Program recruits, supports, and follows the progress of graduate students, postdoctoral (Ph.D. or M.D.) fellows, and junior faculty in disciplines relevant to HNRC research. The HNRC is committed to tailoring our training opportunities to the backgrounds and interests of candidates from a variety of disciplines who join us with various levels of training and experience in research. We have and will continue to provide training and mentoring of medical students, doctoral students in clinical psychology, and postdoctoral fellows in Medicine, Psychiatry, Neurology, and Psychology. Sponsors: The Center is supported by public funding from the National Institutes of Health, the State of California, and other sources.
Proper citation: HIV Neurobehavioral Research Center (RRID:SCR_005370) Copy
http://neurolex.org/wiki/Main_Page
A freely editable semantic wiki for community-based curation of the terms used in Neuroscience. Entries are curated and eventually incorporated into the formal NIFSTD ontology. NeuroLex also includes a Resource branch for community members to freely add neuroscience relevant resources that do not become part of NIFSTD ontology but rather make up the NIF Registry. As part of the NIF, we provide a simple search interface to many different sources of neuroscience information and data. To make this search more effective, we are constructing ontologies to help organize neuroscience concepts into category hierarchies, e.g., neuron is a cell. These categories provide the means to perform more effective searches and also to organize and understand the information that is returned. But an important adjunct to this activity is to clearly define all of the terms that we use to describe our data, e.g., anatomical terms, techniques, organism names. Because wikis provide an easy interface for communities to contribute their knowledge, we started the NeuroLex.
Proper citation: NeuroLex (RRID:SCR_005402) Copy
http://fcon_1000.projects.nitrc.org/
Collection of resting state fMRI (R-fMRI) datasets from sites around world. It demonstrates open sharing of R-fMRI data and aims to emphasize aggregation and sharing of well-phenotyped datasets.
Proper citation: 1000 Functional Connectomes Project (RRID:SCR_005361) Copy
http://www.med.harvard.edu/AANLIB/
An atlas of normal and abnormal brain images intended as an introduction to basic neuroanatomy, with emphasis on the pathoanatomy of several leading central nervous system diseases that integrates clinical information with magnetic resonance (MR), x-ray computed tomography (CT), and nuclear medicine images. A range of brain abnormalities are presented including examples of certain brain disease presented with various combinations of image type and imaging frequency. Submissions of concise, exemplary, clinically driven examples of neuroimaging are welcome.
Proper citation: Whole Brain Atlas (RRID:SCR_005390) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.