Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A web-compliant application that allows connectomics visualization by converting datasets to web-optimized tiles, delivering volume transforms to client devices, and providing groups of users with connectome annotation tools and data simultaneously via conventional internet connections. Viking is an extensible tool for connectomics analysis and is generalizable to histomics applications.
Proper citation: Viking Viewer for Connectomics (RRID:SCR_005986) Copy
A social visualization repository for the scientific workflow management system VisTrails providing a platform for sharing and executing computational tasks. It adopts the model used by social Web sites and that integrates a set of usable tools and a scalable infrastructure to provide an environment for scientists to collaboratively analyze and visualize data. crowdLabs aims to foster collaboration but was specifically designed to support the needs of computational scientists, including the ability to access high-performance computers and manipulate large volumes of data. By providing mechanisms that simplify the publishing and use of analysis pipelines, it allows IT personnel and end users to collaboratively construct and refine portals. This lowers the barriers for the use of scientific analyses and enables broader audiences to contribute insights to the scientific exploration process, without the high costs incurred by traditional portals. In addition, it supports a more dynamic environment where new exploratory analyses can be added on-the-fly.
Proper citation: crowdLabs (RRID:SCR_006294) Copy
http://evolution.genetics.washington.edu/phylip.html
A free package of software programs for inferring phylogenies (evolutionary trees). The source code is distributed (in C), and executables are also distributed. In particular, already-compiled executables are available for Windows (95/98/NT/2000/me/xp/Vista), Mac OS X, and Linux systems. Older executables are also available for Mac OS 8 or 9 systems.
Proper citation: PHYLIP (RRID:SCR_006244) Copy
A project that observes the processes of adaptive evolution in nature, and tests evolutionary hypotheses, by studying populations of guppies on the Caribbean island of Trinidad. Darwin thought that evolution by natural selection occurred very slowly, over hundreds if not thousands of years. Evolutionary biologists now know that evolutionary changes in species can happen very quickly, over a relatively few generations. The National Science Foundation (NSF), through its Integrative Biological Research (FIBR) program, is funding a 5-year study by 13 biologists from colleges, universities, and research institutions throughout the United States and Canada, to study the relationship of adaptive evolution and environmental circumstances. The Trinidadian guppy (Poecilia reticulata) is an excellent species for these purposes because: * It matures rapidly (one generation = 3-4 months) * It inhabits different ecological environments that can be easily manipulated On Trinidad, guppies live in streams, or portions of streams, that can differ in the species of predators that the guppies have to contend with. Some streams are high-predation environments, others low-predation. Different predation environments are often right next to one another, separated by a waterfall (which neither guppies nor predators can cross). Guppies from high-predation environments experience much higher mortality rates than do guppies in low-predation environments. High mortality is associated with the following characteristics, all of which have a genetic basis: * Earlier maturity * Greater investment of resources in reproduction * More and smaller offspring. We have found that mortality rates can be manipulated by: * Transplanting guppies from high-predation localities into sites from which they and their predators had previously been excluded by natural waterfalls, thus lowering mortality rates; * Introducing predators into low-predation sites, thus increasing mortality rates. Such experiments have shown that species evolve as predicted by theory. We have also found that evolution by natural selection can be remarkably fast, on the order of four to seven orders of magnitude faster than had been inferred from the fossil record.
Proper citation: Guppy Project (RRID:SCR_006255) Copy
http://rice.plantbiology.msu.edu/
Database and resource that provides sequence and annotation data for the rice genome. This website provides genome sequence from the Nipponbare subspecies of rice and annotation of the 12 rice chromosomes. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 75 tracks of annotation. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads. Rice is a model species for the monocotyledonous plants and the cereals which are the greatest source of food for the world''s population. While rice genome sequence is available through multiple sequencing projects, high quality, uniform annotation is required in order for genome sequence data to be fully utilized by researchers. The existence of a common gene set and uniform annotation allows researchers within the rice community to work from a common resource so that their results can be more easily interpreted by other scientists. The objective of this project has always been to provide high quality annotation for the rice genome. They generated, refined and updated gene models for the estimated 40,000-60,000 total rice genes, provided standardized annotation for each model, linked each model to functional annotation including expression data, gene ontologies, and tagged lines. They have provided a resource to extend the annotation of the rice genome to other plant species by providing comparative alignments to other plant species. Analysis/Tools are available including: BLAST, Locus Name Search, Functional Term Search, Protein Domain Search, Anatomy Expression Viewer, Highly Expressed Genes
Proper citation: Rice Genome Annotation (RRID:SCR_006663) Copy
Ontology and database that links plant anatomy, morphology and growth and development to plant genomics data.Plant Ontology Consortium develops, curates and shares controlled vocabularies (ontologies) that describe plant structures and growth and developmental stages, providing semantic framework for meaningful cross species queries across databases. PO is under active development to expand to encompass terms and annotations from all plants.
Proper citation: Plant Ontology (RRID:SCR_006494) Copy
http://www.broad.mit.edu/annotation/fungi/fgi/
Produces and analyzes sequence data from fungal organisms that are important to medicine, agriculture and industry. The FGI is a partnership between the Broad Institute and the wider fungal research community, with the selection of target genomes governed by a steering committee of fungal scientists. Organisms are selected for sequencing as part of a cohesive strategy that considers the value of data from each organism, given their role in basic research, health, agriculture and industry, as well as their value in comparative genomics.
Proper citation: Fungal Genome Initiative (RRID:SCR_003169) Copy
http://www.sgn.cornell.edu/bulk/input.pl?modeunigene
Allows users to download Unigene or BAC information using a list of identifiers or complete datasets with FTP., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Sol Genomics Network - Bulk download (RRID:SCR_007161) Copy
http://www.nber.org/papers/h0038
A dataset to advance the study of life-cycle interactions of biomedical and socioeconomic factors in the aging process. The EI project has assembled a variety of large datasets covering the life histories of approximately 39,616 white male volunteers (drawn from a random sample of 331 companies) who served in the Union Army (UA), and of about 6,000 African-American veterans from 51 randomly selected United States Colored Troops companies (USCT). Their military records were linked to pension and medical records that detailed the soldiers������?? health status and socioeconomic and family characteristics. Each soldier was searched for in the US decennial census for the years in which they were most likely to be found alive (1850, 1860, 1880, 1900, 1910). In addition, a sample consisting of 70,000 men examined for service in the Union Army between September 1864 and April 1865 has been assembled and linked only to census records. These records will be useful for life-cycle comparisons of those accepted and rejected for service. Military Data: The military service and wartime medical histories of the UA and USCT men were collected from the Union Army and United States Colored Troops military service records, carded medical records, and other wartime documents. Pension Data: Wherever possible, the UA and USCT samples have been linked to pension records, including surgeon''''s certificates. About 70% of men in the Union Army sample have a pension. These records provide the bulk of the socioeconomic and demographic information on these men from the late 1800s through the early 1900s, including family structure and employment information. In addition, the surgeon''''s certificates provide rich medical histories, with an average of 5 examinations per linked recruit for the UA, and about 2.5 exams per USCT recruit. Census Data: Both early and late-age familial and socioeconomic information is collected from the manuscript schedules of the federal censuses of 1850, 1860, 1870 (incomplete), 1880, 1900, and 1910. Data Availability: All of the datasets (Military Union Army; linked Census; Surgeon''''s Certificates; Examination Records, and supporting ecological and environmental variables) are publicly available from ICPSR. In addition, copies on CD-ROM may be obtained from the CPE, which also maintains an interactive Internet Data Archive and Documentation Library, which can be accessed on the Project Website. * Dates of Study: 1850-1910 * Study Features: Longitudinal, Minority Oversamples * Sample Size: ** Union Army: 35,747 ** Colored Troops: 6,187 ** Examination Sample: 70,800 ICPSR Link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06836
Proper citation: Early Indicators of Later Work Levels Disease and Death (EI) - Union Army Samples Public Health and Ecological Datasets (RRID:SCR_008921) Copy
A public resource composed of a collection of databases, computational and experimental resources that relate to the control of gene expression in the grasses, and their relationship with agronomic traits. As knowledge on the interactions of transcription factors (TFs) and cis-regulatory elements in the promoters of the genes that they regulate continues to accumulate, the information is acquired by GRASSIUS, either through contributions by the community, or by literature analysis. The overarching objective of GRASSIUS is to provide a one-stop resource that will facilitate research and communication within the plant community with regards to genome-wide regulation of gene expression processes.
Proper citation: GRASSIUS (RRID:SCR_012999) Copy
http://www.rcsb.org/#Category-welcome
Collection of structural data of biological macromolecules. Database of information about 3D structures of large biological molecules, including proteins and nucleic acids. Users can perform queries on data and analyze and visualize results.
Proper citation: Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (RRID:SCR_012820) Copy
Software suite to analyse gait trials collected with Experimental Dynamic Gait Arena for Rodents. Used for rodent gait analysis.
Proper citation: GAITOR Suite (RRID:SCR_023031) Copy
https://github.com/katiasmirn/PERFect#perfect-permutation-filtering-package-in-r
Software R package as filtering test for microbiome data. Permutation filtering approach to address two unsolved problems in microbiome data processing: (i) define and quantify loss due to filtering by implementing thresholds and (ii) introduce and evaluate a permutation test for filtering loss to provide a measure of excessive filtering.
Proper citation: PERFect (RRID:SCR_024682) Copy
https://www.planetmicrobe.org/
Web based platform that enables data discovery from curated historical and on going oceanographic sequencing efforts. Enables discovery and integration of oceanographic ‘omics, environmental and physiochemical data layers. Used to centralize and standardize contextual data associated with major marine 'omic datasets. Used for marine microbiology to discover and analyze interconnected 'omics and environmental data.
Proper citation: Planet Microbe (RRID:SCR_024478) Copy
Portal as data resource, map repository, and GIS service provider for federally-funded scientists conducting research in the Arctic and Antarctic. The PGC holds an extensive collection of satellite imagery and aerial photography at varying resolutions.
Proper citation: Polar Geospatial Center (RRID:SCR_000402) Copy
https://plantcyc.org/content/plantcyc-15.2.0
Multi species reference database. Comprehensive plant biochemical pathway database, containing curated information from literature and computational analyses about genes, enzymes, compounds, reactions, and pathways involved in primary and secondary metabolism.
Proper citation: PlantCyc (RRID:SCR_002110) Copy
http://www.nitrc.org/projects/hdbig/
A collection of software tools for high dimensional brain imaging genomics. These tools are designed to perform comprehensive joint analysis of heterogeneous imaging genomics data. HDBIG-SR is an HDBIG toolkit for sparse regression while HDBIG-SCCA is an HDBIG toolkit for sparse association.
Proper citation: HDBIG (RRID:SCR_014120) Copy
http://www.nitrc.org/projects/cta_toolbox
A Matlab tool to perform statistical analysis on cortical thickness signals on brain surfaces obtained from Freesurfer. It is used for multi-resolutional analysis of such cortical thickness signals and detecting group differences. It is based on the Spectral Graph Wavelet Transform (SGWT) toolbox and provides plug and play methods for deriving Wavelet Multiscale Descriptor (WMD), cortical thickness smoothing using SGWT, Multivariate General Linear Model (MGLM), and False Discovery Rate (FDR).
Proper citation: Wisconsin Cortical Thickness Analysis (CTA) Toolbox (RRID:SCR_014180) Copy
http://krasnow1.gmu.edu/CENlab/software.html
Stochastic reaction-diffusion simulator in Java which is used for simulating neuronal signaling pathways.
Proper citation: NeuroRD (RRID:SCR_014769) Copy
http://www.nitrc.org/projects/gscca_2013/
Group Sparse Canonical Correlation Analysis is a method designed to study the mutual relationship between two different types of data.
Proper citation: Group Sparse Canonical Correlation Analysis (RRID:SCR_014977) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.