Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 out of 176 results
Snippet view Table view Download 176 Result(s)
Click the to add this resource to a Collection

http://www.nitrc.org/projects/pediatric_mri

A database which contains longitudinal structural MRIs, spectroscopy, DTI and correlated clinical/behavioral data from approximately 500 healthy, normally developing children, ages newborn to young adult.

Proper citation: NIH Pediatric MRI Data Repository (RRID:SCR_014149) Copy   


  • RRID:SCR_017099

http://pklab.med.harvard.edu/scde/pagoda.links.html

Software tool for analyzing transcriptional heterogeneity to detect statistically significant ways in which measured cells can be classified. Used to resolve multiple, potentially overlapping aspects of transcriptional heterogeneity by testing gene sets for coordinated variability among measured cells.

Proper citation: PAGODA (RRID:SCR_017099) Copy   


  • RRID:SCR_017068

    This resource has 1+ mentions.

https://github.com/FeeLab/seqNMF

Software tool for unsupervised discovery of sequential structure. Used to detect sequences in neural data generated by internal behaviors, such as animal thinking or sleeping. Used for unsupervised discovery of temporal sequences in high dimensional datasets in neuroscience without reference to external markers.

Proper citation: seqNMF (RRID:SCR_017068) Copy   


http://www.gensat.org/

Gene expression data and maps of mouse central nervous system. Gene expression atlas of developing adult central nervous system in mouse, using in situ hybridization and transgenic mouse techniques. Collection of pictorial gene expression maps of brain and spinal cord of mouse. Provides tools to catalog, map, and electrophysiologically record individual cells. Application of Cre recombinase technologies allows for cell-specific gene manipulation. Transgenic mice created by this project are available to scientific community.

Proper citation: Gene Expression Nervous System Atlas (RRID:SCR_002721) Copy   


  • RRID:SCR_017631

    This resource has 50+ mentions.

https://github.com/sccn/labstreaminglayer

System for unified collection of measurement time series in research experiments that handles networking, time synchronization, near real time access as well as optionally centralized collection, viewing and disk recording of data. System for synchronizing streaming data for live analysis or recording.

Proper citation: Lab Streaming Layer (RRID:SCR_017631) Copy   


https://www.phenxtoolkit.org/

Set of measures intended for use in large-scale genomic studies. Facilitate replication and validation across studies. Includes links to standards and resources in effort to facilitate data harmonization to legacy data. Measurement protocols that address wide range of research domains. Information about each protocol to ensure consistent data collection.Collections of protocols that add depth to Toolkit in specific areas.Tools to help investigators implement measurement protocols.

Proper citation: Phenotypes and eXposures Toolkit (RRID:SCR_006532) Copy   


http://krasnow1.gmu.edu/cn3/index3.html

Multidisciplinary research team devoted to the study of basic neuroscience with a specific interest in the description and generation of dendritic morphology, and in its effect on neuronal electrophysiology. In the long term, they seek to create large-scale, anatomically plausible neural networks to model entire portions of a mammalian brain (such as a hippocampal slice, or a cortical column). Achievements by the CNG include the development of software for the quantitative analysis of dendritic morphology, the implementation of computational models to simulate neuronal structure, and the synthesis of anatomically accurate, large scale neuronal assemblies in virtual reality. Based on biologically plausible rules and biophysical determinants, they have designed stochastic models that can generate realistic virtual neurons. Quantitative morphological analysis indicates that virtual neurons are statistically compatible with the real data that the model parameters are measured from. Virtual neurons can be generated within an appropriate anatomical context if a system level description of the surrounding tissue is included in the model. In order to simulate anatomically realistic neural networks, axons must be grown as well as dendrites. They have developed a navigation strategy for virtual axons in a voxel substrate.

Proper citation: Computational Neuroanatomy Group (RRID:SCR_007150) Copy   


  • RRID:SCR_007087

http://brainml.org/goto.do?page=.home

Set of standards and practices for using XML to facilitate information exchange between user application software and neuroscience data repositories. It allows for common shared library routines to handle most of the data processing, but also supports use of structures specialized to the needs of particular neuroscience communities. This site also serves as a repository for BrainML models. (A BrainML model is an XML Schema and optional vocabulary files describing a data model for electronic representation of neuroscience data, including data types, formats, and controlled vocabulary. ) It focuses on layered definitions built over a common core in order to support community-driven extension. One such extension is provided by the new NIH-supported neuroinformatics initiative of the Society for Neuroscience, which supports the development of expert-derived terminology sets for several areas of neuroscience. Under a cooperative agreement, these term lists will be made available Open Source on this site.
The repository function of this site includes the following features:
* BrainML models are published in searchable, browsable form.
* Registered users may submit new models or new versions of existing models to accommodate data of interest. * BrainML model schema and vocabulary files are made available at fixed URLs to allow software applications to reference them.
* Users can check models and/or instance documents for correct format before submitting them using an online validation service.
To complement the BrainML modeling language, a set of protocols have been developed for BrainML document exchange between repositories and clients, for indexing of repositories, and for data query.

Proper citation: BrainML (RRID:SCR_007087) Copy   


  • RRID:SCR_007271

    This resource has 100+ mentions.

http://senselab.med.yale.edu/modeldb/

Curated database of published models so that they can be openly accessed, downloaded, and tested to support computational neuroscience. Provides accessible location for storing and efficiently retrieving computational neuroscience models.Coupled with NeuronDB. Models can be coded in any language for any environment. Model code can be viewed before downloading and browsers can be set to auto-launch the models. The model source code has to be available from publicly accessible online repository or WWW site. Original source code is used to generate simulation results from which authors derived their published insights and conclusions.

Proper citation: ModelDB (RRID:SCR_007271) Copy   


http://trans.nih.gov/CEHP/

Trans-NIH project to assess the state of longitudinal and epidemiological research on demographic, social and biologic determinants of cognitive and emotional health in aging adults and the pathways by which cognitive and emotional health may reciprocally influence each other. A database of large scale longitudinal study relevant to healthy aging in 4 domains was created based on responses of investigators conducting these studies and is available for query. The four domains are: * Cognitive Health * Emotional Health * Demographic and Social Factors * Biomedical and Physiologic Factors

Proper citation: Cognitive and Emotional Health Project: The Healthy Brain (RRID:SCR_007390) Copy   


http://www.nntc.org/

Collects, stores, and distributes samples of nervous tissue, cerebrospinal fluid, blood, and other tissue from HIV-infected individuals. The NNTC mission is to bolster research on the effects of HIV infection on human brain by providing high-quality, well-characterized tissue samples from patients who died with HIV, and for whom comprehensive neuromedical and neuropsychiatric data were gathered antemortem. Researchers can request tissues from patients who have been characterized by: * degree of neurobehavioral impairment * neurological and other clinical diagnoses * history of drug use * antiretroviral treatments * blood and CSF viral load * neuropathological diagnosis The NNTC encourages external researchers to submit tissue requests for ancillary studies. The Specimen Query Tool is a web-based utility that allows researchers to quickly sort and identify appropriate NNTC specimens to support their research projects. The results generated by the tool reflect the inventory at a previous time. Actual availability at the local repositories may vary as specimens are added or distributed to other investigators.

Proper citation: National NeuroAIDS Tissue Consortium (RRID:SCR_007323) Copy   


  • RRID:SCR_016871

    This resource has 10+ mentions.

http://marrvel.org/

Web tool to search multiple public variant databases simultaneously and provide a unified interface to facilitate the search process. Used for integration of human and model organism genetic resources to facilitate functional annotation of the human genome. Used for analysis of human genes and variants by cross-disciplinary integration of records available in public databases to facilitate clinical diagnosis and basic research.

Proper citation: MARRVEL (RRID:SCR_016871) Copy   


  • RRID:SCR_017350

    This resource has 1+ mentions.

https://github.com/neitzlab/sbfsem-tools

Data analysis and 3D visualization for connectomics and serial electron microscopy. This toolbox provides missing 3D visualization and analysis tools for cylinder-based annotations. Integration with contour, skeleton based annotations and common morphology file formats is also supported.

Proper citation: SBFSEM-tools (RRID:SCR_017350) Copy   


https://github.com/SilverLabUCL/SilverLab-Microscope-Software

Software for use with compact Acousto-Optic Lens Microscope (AOLM) developed in the Silver Lab at UCL. Written in LabVIEW. Performs multiple imaging modes and protocols including Z-stacks, multi-plane, single-plane, sub-volume, patches and points. It comes with tools for visualising data acquired with system.

Proper citation: Silver Lab Microscopy Software (RRID:SCR_017456) Copy   


  • RRID:SCR_000421

    This resource has 1+ mentions.

http://www.nitrc.org/projects/pennhippoatlas/

Atlas of segmented and normalized high-resolution postmortem MRI of the human hippocampus. Additional data (raw images) is available through the SCM link. It requires knowing how to use CVS.

Proper citation: Penn Hippocampus Atlas (RRID:SCR_000421) Copy   


http://neurosurgery.ucsf.edu/index.php/research_tissue_bank.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 4th,2023. Brain Tumor Research Center Tissue Bank began collecting tissue in 1978 and has established an organized repository of characterized tissues--frozen, paraffin-embedded, blood and cultures--that are maintained in a manner useful for a wide range of studies. Samples are collected only from patients who have agreed to have their tissues banked and used for future research. Consent documents are maintained in a secure area and associated clinical data are held in a double-password protected computer database. Each sample received into the Tissue Bank is non-identifying number. No protected health information (PHI) is released. To obtain samples, investigators submit a request form to the Manager. The request form requires an explanation of the tissue requested (type, number of samples, justification), description of the study, CHR approval (see new policy regarding human vs. non-human research) and Project Leader authorization. The Manager reviews each request for feasibility before presentation to the Scientific Core Committee. The UCSF Neurosurgery Tissue Bank makes its inventory of stock cell lines available to all investigators. Requested cells are grown in T-25 flasks and shipped FedEx Priority Overnight at the receipient's expense. However, if you prefer, we can ship the frozen cells, packed in dry ice. (Note: some countries restrict dry ice shipments.)

Proper citation: UCSF Brain Tumor Tissue Bank (RRID:SCR_000647) Copy   


http://med.emory.edu/ADRC/research/tissue_biospecimen_banking_facility.html

The Alzheimer's Disease Research Center at Emery University maintains an active brain bank to facilitate the acquisition, storage, handling and distribution of well-characterized autopsy brain tissue and other materials to investigators. It contains frozen tissue and brain specimens, formalin fixed tissue, paraformaldehyde fixed tissue, and cryopreserved tissue. The ADRC also has access to tissues and samples related to other neurodegenerative diseases. It contains plasma samples, serum samples, lymphoblast cell lines, and cerebrospinal fluid.

Proper citation: Emory ADRC Tissue and Biospecimen Banking Facility (RRID:SCR_000551) Copy   


  • RRID:SCR_001635

    This resource has 1+ mentions.

http://mus.well.ox.ac.uk/gscandb/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. Database / display tool of genome scans, with a web interface that lets the user view the data. It does not perform any analyses - these must be done by other software, and the results uploaded into it. The basic features of GSCANDB are: * Parallel viewing of scans for multiple phenotypes. * Parallel analyses of the same scan data. * Genome-wide views of genome scans * Chromosomal region views, with zooming * Gene and SNP Annotation is shown at high zoom levels * Haplotype block structure viewing * The positions of known Trait Loci can be overlayed and queried. * Links to Ensembl, MGI, NCBI, UCSC and other genome data browsers. In GSCANDB, a genome scan has a wide definition, including not only the usual statistical genetic measures of association between genetic variation at a series of loci and variation in a phenotype, but any quantitative measure that varies along the genome. This includes for example competitive genome hybridization data and some kinds of gene expression measurements.

Proper citation: WTCHG Genome Scan Viewer (RRID:SCR_001635) Copy   


  • RRID:SCR_002981

    This resource has 50+ mentions.

http://www.emouseatlas.org

Detailed multidimensional digital multimodal atlas of C57BL/6J mouse nervous system with data and informatics pipeline that can automatically register, annotate, and visualize large scale neuroanatomical and connectivity data produced in histology, neuronal tract tracing, MR imaging, and genetic labeling. MAP2.0 interoperates with commonly used publicly available databases to bring together brain architecture, gene expression, and imaging information into single, simple interface.Resource to visualise mouse development, identify anatomical structures, determine developmental stage, and investigate gene expression in mouse embryo. eMouseAtlas portal page allows access to EMA Anatomy Atlas of Mouse Development and EMAGE database of gene expression.EMAGE is freely available, curated database of gene expression patterns generated by in situ techniques in developing mouse embryo. EMA, e-Mouse Atlas, is 3-D anatomical atlas of mouse embryo development including histology and includes EMAP ontology of anatomical structure, provides information about shape, gross anatomy and detailed histological structure of mouse, and framework into which information about gene function can be mapped.

Proper citation: eMouseAtlas (RRID:SCR_002981) Copy   


  • RRID:SCR_007292

    This resource has 5000+ mentions.

http://www.nitrc.org/projects/eeglab/

Interactive Matlab toolbox for processing continuous and event-related EEG, MEG and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. First developed on Matlab 5.3 under Linux, EEGLAB runs on Matlab v5 and higher under Linux, Unix, Windows, and Mac OS X (Matlab 7+ recommended). EEGLAB provides an interactive graphic user interface (GUI) allowing users to flexibly and interactively process their high-density EEG and other dynamic brain data using independent component analysis (ICA) and/or time/frequency analysis (TFA), as well as standard averaging methods. EEGLAB also incorporates extensive tutorial and help windows, plus a command history function that eases users'' transition from GUI-based data exploration to building and running batch or custom data analysis scripts. EEGLAB offers a wealth of methods for visualizing and modeling event-related brain dynamics, both at the level of individual EEGLAB ''datasets'' and/or across a collection of datasets brought together in an EEGLAB ''studyset.'' For experienced Matlab users, EEGLAB offers a structured programming environment for storing, accessing, measuring, manipulating and visualizing event-related EEG data. For creative research programmers and methods developers, EEGLAB offers an extensible, open-source platform through which they can share new methods with the world research community by publishing EEGLAB ''plug-in'' functions that appear automatically in the EEGLAB menu of users who download them. For example, novel EEGLAB plug-ins might be built and released to ''pick peaks'' in ERP or time/frequency results, or to perform specialized import/export, data visualization, or inverse source modeling of EEG, MEG, and/or ECOG data. EEGLAB Features * Graphic user interface * Multiformat data importing * High-density data scrolling * Defined EEG data structure * Open source plug-in facility * Interactive plotting functions * Semi-automated artifact removal * ICA & time/frequency transforms * Many advanced plug-in toolboxes * Event & channel location handling * Forward/inverse head/source modeling

Proper citation: EEGLAB (RRID:SCR_007292) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X