Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.
Proper citation: BiGG Database (RRID:SCR_005809) Copy
http://the_brain.bwh.harvard.edu/uniprobe/
Database that hosts experimental data from universal protein binding microarray (PBM) experiments (Berger et al., 2006) and their accompanying statistical analyses from prokaryotic and eukaryotic organisms, malarial parasites, yeast, worms, mouse, and human. It provides a centralized resource for accessing comprehensive data on the preferences of proteins for all possible sequence variants ("words") of length k ("k-mers"), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. The database's web tools include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences.
Proper citation: UniPROBE (RRID:SCR_005803) Copy
http://indel.bioinfo.sdu.edu.cn/gridsphere/gridsphere
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Indel Flanking Region Database is an online resource for indels and the flanking regions of proteins in SCOP superfamilies, including amino acid sequences, lengths, locations, secondary structure constitutions, hydrophilicity / hydrophobicity, domain information, 3D structures and so on. It aims at providing a comprehensive dataset for analyzing the qualities of amino acid insertion/deletions(indels), substitutions and the relationship between them. The indels were obtained through the pairwise alignment of homologous structures in SCOP superfamilies. The IndelFR database contains 2,925,017 indels with flanking regions extracted from 373,402 structural alignment pairs of 12,573 non-redundant domains from 1053 superfamilies. IndelFR has already been used for molecular evolution studies and may help to promote future functional studies of indels and their flanking regions.
Proper citation: IndelFR - Indel Flanking Region Database (RRID:SCR_006050) Copy
Relational database of all the discovered similar pairs in a huge number of protein-ligand binding sites with annotations of various types (e.g., CATH, SCOP, EC number, Gene ontology). They used a tremendously fast algorithm called SketchSort that enables the enumeration of similar pairs in a huge number of protein-ligand binding sites. They conducted all-pair similarity searches for 3.4 million known and potential binding sites using the proposed method and discovered over 24 million similar pairs of binding sites. PoSSuM enables rapid exploration of similar binding sites among structures with different global folds as well as similar ones. Moreover, PoSSuM is useful for predicting the binding ligand for unbound structures. Basically, the users can search similar binding pockets using two search modes: # Search K is useful for finding similar binding sites for a known ligand-binding site. Post a known ligand-binding site (a pair of PDB ID and HET code) in the PDB, and PoSSuM will search similar sites for the query site. # Search P is useful for predicting ligands that potentially bind to a structure of interest. Post a known protein structure (PDB ID) in the PDB, and PoSSuM will search similar known-ligand binding sites for the query structure.
Proper citation: PoSSuM (RRID:SCR_006109) Copy
http://mint.bio.uniroma2.it/virusmint/
A virus protein interactions database that collects and annotates all the interactions between human and viral proteins and integrates this information in the human protein interaction network. It uses the PSI-MI standard and is fully integrated with the MINT database. You can search for any viral or human protein by entering either common names or database identifiers or display a complete viral interactome.
Proper citation: VirusMINT (RRID:SCR_005987) Copy
The Kabat Database determines the combining site of antibodies based on the available amino acid sequences. The precise delineation of complementarity determining regions (CDR) of both light and heavy chains provides the first example of how properly aligned sequences can be used to derive structural and functional information of biological macromolecules. The Kabat database now includes nucleotide sequences, sequences of T cell receptors for antigens (TCR), major histocompatibility complex (MHC) class I and II molecules, and other proteins of immunological interest. The Kabat Database searching and analysis tools package is an ASP.NET web-based portal containing lookup tools, sequence matching tools, alignment tools, length distribution tools, positional correlation tools and much more. The searching and analysis tools are custom made for the aligned data sets contained in both the SQL Server and ASCII text flat file formats. The searching and analysis tools may be run on a single PC workstation or in a distributed environment. The analysis tools are written in ASP.NET and C# and are available in Visual Studio .NET 2003/2005/2008 formats. The Kabat Database was initially started in 1970 to determine the combining site of antibodies based on the available amino acid sequences at that time. Bence Jones proteins, mostly from human, were aligned, using the now-known Kabat numbering system, and a quantitative measure, variability, was calculated for every position. Three peaks, at positions 24-34, 50-56 and 89-97, were identified and proposed to form the complementarity determining regions (CDR) of light chains. Subsequently, antibody heavy chain amino acid sequences were also aligned using a different numbering system, since the locations of their CDRs (31-35B, 50-65 and 95-102) are different from those of the light chains. CDRL1 starts right after the first invariant Cys 23 of light chains, while CDRH1 is eight amino acid residues away from the first invariant Cys 22 of heavy chains. During the past 30 years, the Kabat database has grown to include nucleotide sequences, sequences of T cell receptors for antigens (TCR), major histocompatibility complex (MHC) class I and II molecules and other proteins of immunological interest. It has been used extensively by immunologists to derive useful structural and functional information from the primary sequences of these proteins.
Proper citation: Kabat Database of Sequences of Proteins of Immunological Interest (RRID:SCR_006465) Copy
ProPortal is a database containing genomic, metagenomic, transcriptomic and field data for the marine cyanobacterium Prochlorococcus. Our goal is to provide a source of cross-referenced data across multiple scales of biological organization--from the genome to the ecosystem--embracing the full diversity of ecotypic variation within this microbial taxon, its sister group, Synechococcus and phage that infect them. The site currently contains the genomes of 13 Prochlorococcus strains, 11 Synechococcus strains and 28 cyanophage strains that infect one or both groups. Cyanobacterial and cyanophage genes are clustered into orthologous groups that can be accessed by keyword search or through a genome browser. Users can also identify orthologous gene clusters shared by cyanobacterial and cyanophage genomes. Gene expression data for Prochlorococcus ecotypes MED4 and MIT9313 allow users to identify genes that are up or downregulated in response to environmental stressors. In addition, the transcriptome in synchronized cells grown on a 24-h light-dark cycle reveals the choreography of gene expression in cells in a ''natural'' state. Metagenomic sequences from the Global Ocean Survey from Prochlorococcus, Synechococcus and phage genomes are archived so users can examine the differences between populations from diverse habitats. Finally, an example of cyanobacterial population data from the field is included.
Proper citation: ProPortal (RRID:SCR_006112) Copy
http://tardis.nibio.go.jp/homstrad/
A curated database of structure-based alignments for homologous protein families. All known protein structure are clustered into homologous families (i.e., common ancestry), and the sequences of representative members of each family are aligned on the basis of their 3D structures using the programs MNYFIT, STAMP and COMPARER. These structure-based alignments are annotated with JOY and examined individually.
Proper citation: HOMSTRAD - Homologous Structure Alignment Database (RRID:SCR_006544) Copy
Public global Protein Data Bank archive of macromolecular structural data overseen by organizations that act as deposition, data processing and distribution centers for PDB data. Members are: RCSB PDB (USA), PDBe (Europe) and PDBj (Japan), and BMRB (USA). This site provides information about services provided by individual member organizations and about projects undertaken by wwPDB. Data available via websites of its member organizations.
Proper citation: Worldwide Protein Data Bank (wwPDB) (RRID:SCR_006555) Copy
http://www.grt.kyushu-u.ac.jp/spad/
It is divided to four categories based on extracellular signal molecules (Growth factor, Cytokine, and Hormone) and stress, that initiate the intracellular signaling pathway. SPAD is compiled in order to describe information on interaction between protein and protein, protein and DNA as well as information on sequences of DNA and proteins. There are multiple signal transduction pathways: cascade of information from plasma membrane to nucleus in response to an extracellular stimulus in living organisms. Extracellular signal molecule binds specific intracellular receptor, and initiates the signaling pathway. Now, there is a large amount of information about the signaling pathway which controls the gene expression and cellular proliferation. We have developed an integrated database SPAD to understand the overview of signaling transduction.
Proper citation: Signaling Pathway Database (RRID:SCR_008243) Copy
http://escience.invitrogen.com/ipath/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 26, 2016. LINNEA Pathways is a user-friendly comprehensive online resource for gene- or protein-based scientific research. It is based on a total of 248 signaling and metabolic human biological pathway maps created for Invitrogen by GeneGo. The current version of iPath features 225 maps displaying human regulatory and metabolic pathways established in experimental literature produced by MetaCore from GeneGo, Inc. The map objects (proteins, genes, EC functions, and compounds) are connected via metabolic transformations and physical protein interactions, which were assembled by the GeneGo team of experienced annotators, geneticists, and biochemists. The pathways are organized in a vertical fashion following the general signaling path from signaling molecules and membrane receptors, via signal transduction cascades, to transcription factors and their gene targets. Following the natural organization of cellular machinery with highly interconnected pathways and modules, many maps are linked together via hyperlinked box symbols. Such linkage allows the reconstruction of a big picture view of human cell biology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Invitrogen iPath (RRID:SCR_008120) Copy
ITFP is an integrated transcription factor (TF) platform, which included abundant TFs and targets message of mammalian. Support vector machine (SVM) algorithm combined with error-correcting output coding (ECOC) algorithm was utilized to identify and classify transcription factor from protein sequence of Human, Mouse and Rat. For transcription factor targets, a reverse engineering method named ARACNE was used to derive potential interaction pairs between transcription factor and downstream regulated gene from Human, Mouse and Rat gene expression profile data. Detailed information of gene expression profile data can be found in help page. Moreover, all data provided by the platform is free for non-commercial users and can be downloaded through links on help page.
Proper citation: Intergrated Transcription Factor Platform (RRID:SCR_008119) Copy
iRefWeb is an interface to a relational database containing the latest build of the interaction Reference Index (iRefIndex) which integrates protein interaction data from nine different interaction databases: BioGRID, BIND, CORUM, DIP, HPRD, INTACT, MINT, MPPI, MPACT and OPHID. Integration is achieved through a rigorously documented procedure for mapping protein IDs across databases, enabling systematic backtracking of the links used to establish the identity of the interaction partners. The iRefWeb interface groups interaction records from the different databases into a single non-redundant view. In particular iRefWeb facilitates comparing interaction records as seen by the various source databases relative to the PubMeds they were annotated from. iRefWeb is one of several views of the iRefIndex resource. Data are also available in a tab-delimited plain-text format (PSI-MITAB) as well as planned releases of a PSI-XML formatted version and a Cytoscape plugin. Further details about the iRefIndex project as well as data downloads are available from here . The method used to build iRefIndex is described in a recent publication.
Proper citation: Interaction Reference Index Web Interface (RRID:SCR_008118) Copy
A horizontally and vertically structured database that pulls scientific and medical information and describes it consistently using the Ingenuity Ontology. The Knowledge Base pulls information from journals, public molecular content databases, and textbooks. Data is curated and and integrated into the Knowledge Base .
Proper citation: Ingenuity Pathways Knowledge Base (RRID:SCR_008117) Copy
http://www.ebi.ac.uk/ipd/mhc/bola/
This website is intended to be the definitive source of information on the bovine major histocompatibility complex - its genes, proteins and polymorphism. Its purpose is to collate data on the Bovine Leucocyte Antigens (BoLA) and provide a forum for the analysis and nomenclature of polymorphisms in the genes and proteins of the bovine MHC. The BoLA nomenclature committee is a standing committee of the International Society for Animal Genetics. Its purpose is to collate data on the Bovine Leucocyte Antigens (BoLA) and provide a forum for the analysis and nomenclature of polymorphisms in the genes and proteins of the bovine MHC. The information gathered here is based on the BoLA workshop reports, which are published in Animal Genetics and the European Journal of Immunogenetics. The workshop report data are reproduced with the permission of the publishers Blackwell Science, and other text on the site is used with the permission of CRC Press.
Proper citation: BoLA Nomenclature: International Society for Animal Genetics (RRID:SCR_008142) Copy
The MIPS mammalian protein-protein interaction database (MPPI) is a new resource of high-quality experimental protein interaction data in mammals. The content is based on published experimental evidence that has been processed by human expert curators. It is a collection of manually curated high-quality PPI data collected from the scientific literature by expert curators. We took great care to include only data from individually performed experiments since they usually provide the most reliable evidence for physical interactions. To suit different users needs we provide a variety of interfaces to search the database: -Expert interface Simple but powerful boolean query language. -PPI search form Easy to use PPI search -Protein search Just find proteins of interest in the database Sponsors: This work is funded by a grant from the German Federal Ministry of Education and Research.
Proper citation: MIPS Mammalian Protein-Protein Interaction Database (RRID:SCR_008207) Copy
http://mips.helmholtz-muenchen.de/genre/proj/mpcdb/
A database of manually annotated mammalian protein complexes. To obtain a high-quality dataset, information was extracted from individual experiments described in the scientific literature. Data from high-throughput experiments was not included.
Proper citation: Mammalian Protein Complex Data Base (RRID:SCR_008209) Copy
http://locustdb.genomics.org.cn/
The migratory locust (Locusta migratoria) is an orthopteran pest and a representative member of hemimetabolous insects. Its transcriptomic data provide invaluable information for molecular entomology study of the insect and pave a way for comparative studies of other medically, agronomically, and ecologically relevant insects. This first transcriptomic database of the locust (LocustDB) has been developed, building necessary infrastructures to integrate, organize, and retrieve data that are either currently available or to be acquired in the future. It currently hosts 45,474 high quality EST sequences from the locust, which were assembled into 12,161 unigenes. This database contains original sequence data, including homologous/orthologous sequences, functional annotations, pathway analysis, and codon usage, based on conserved orthologous groups (COG), gene ontology (GO), protein domain (InterPro), and functional pathways (KEGG). It also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. LocustDB also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, such as the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. It starts with the first transcriptome information for an orthopteran and hemimetabolous insect and will be extended to provide a framework for incorporation of in-coming genomic data of relevant insect groups and a workbench for cross-species comparative studies.
Proper citation: Migratory Locust EST Database (RRID:SCR_008201) Copy
http://www.ebi.ac.uk/asd/altsplice/index.html
AltSplice is a computer generated high quality data set of human transcript-confirmed splice patterns, alternative splice events, and the associated annotations. This data is being integrated with other data that is generated by other members of the ASD consortium. The ASD project will provide the following in its three year duration: -human curated database of alternative spliced genes and their properties -a computer generated database of alternatively spliced genes and their properties -the integration of the above and newly found knowledge in a user-friendly interface and research workbench for both bioinformaticists and biologists -DNA chips that are based on the data in the above databases -the DNA chips will be used to test against predisposition for and diagnoses of human diseases ASD aims to analyse this mechanism on a genome-wide scale by creating a database that contains all alternatively spliced exons from human, and other model species. Disease causing mutations seem to induce aberrations in the process of splicing and its regulation. The ASD consortium will develop a DNA microarray (chip) that contains cDNAs of all the splicing regulatory proteins and their isoforms, as well as a chip that contains a number of disease relevant genes. We will concentrate on three models of disease (breast cancer, FTDP-17, male infertility) in which a connection between mis-splicing and a pathological state has been observed. Finally, these chips will be developed as demonstrative kits to detect predisposition for and diagnosis of such diseases. Categories: Nucleotide Sequences: Gene Structure, Introns and Exons, & Splice Sites Databases
Proper citation: AltSplice Database of Alternative Spliced Events (RRID:SCR_008162) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 15, 2013. Doodle is a database that was developed to store and distribute information about the protein oligomerization domains that are encoded by various genomes. The protein oligomerization domains described here were found using the lambda repressor fusion system. Doodle uses a schema that is based on EnsEMBL, while also utilizing bioperl modules to both store and retrieve data. The frontend was developed entirely in perl, while the backend utilizes MySQL. GMOD was used to develop the genomic view.
Proper citation: Database of oligomerization domains from lambda experiments (RRID:SCR_008107) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.