Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 315 results
Snippet view Table view Download 315 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_003352

    This resource has 10+ mentions.

http://pir.georgetown.edu/pirwww/dbinfo/pirsf.shtml

A SuperFamily classification system, with rules for functional site and protein name, to facilitate the sensible propagation and standardization of protein annotation and the systematic detection of annotation errors. The PIRSF concept is being used as a guiding principle to provide comprehensive and non-overlapping clustering of UniProtKB sequences into a hierarchical order to reflect their evolutionary relationships. The PIRSF classification system is based on whole proteins rather than on the component domains; therefore, it allows annotation of generic biochemical and specific biological functions, as well as classification of proteins without well-defined domains. There are different PIRSF classification levels. The primary level is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). At a lower level are the subfamilies which are clusters representing functional specialization and/or domain architecture variation within the family. Above the homeomorphic level there may be parent superfamilies that connect distantly related families and orphan proteins based on common domains. Because proteins can belong to more than one domain superfamily, the PIRSF structure is formally a network. The FTP site provides free download for PIRSF.

Proper citation: PIRSF (RRID:SCR_003352) Copy   


  • RRID:SCR_003253

    This resource has 100+ mentions.

https://github.com/arq5x/lumpy-sv/

Software package as probabilistic framework for structural variant discovery. Capable of integrating any number of SV detection signals including those generated from read alignments or prior evidence. Simplified wrapper for standard analyses, LUMPY Express, can also be executed.

Proper citation: LUMPY (RRID:SCR_003253) Copy   


  • RRID:SCR_003336

    This resource has 1+ mentions.

http://edoctoring.ncl.ac.uk/Public_site/

Online educational tool that brings challenging clinical practice to your computer, providing medical education that is engaging, challenging and interactive. While there is no substitute for real-life direct contact with patients or colleagues, research has shown that interactive online education can be a highly effective and enjoyable method of learning many components of clinical medicine, including ethics, clinical management, epidemiology and communication skills. eDoctoring offers 25 simulated clinical cases, 15 interactive tutorials and a virtual library containing numerous articles, fast facts and video clips. Their learning material is arranged in the following content areas: * Ethical, Legal and Social Implications of Genetic Testing * Palliative and End-of-Life Care * Prostate Cancer Screening and Shared Decision-Making

Proper citation: eDoctoring (RRID:SCR_003336) Copy   


http://www.cidr.jhmi.edu/

Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.

Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy   


https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page

A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.

Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy   


  • RRID:SCR_007973

    This resource has 100+ mentions.

http://enhancer.lbl.gov/

Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.

Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy   


  • RRID:SCR_000476

    This resource has 1+ mentions.

http://purl.bioontology.org/ontology/DOID

Comprehensive hierarchical controlled vocabulary for human disease representation.Open source ontology for integration of biomedical data associated with human disease. Disease Ontology database represents comprehensive knowledge base of inherited, developmental and acquired human diseases.

Proper citation: Human Disease Ontology (RRID:SCR_000476) Copy   


  • RRID:SCR_000643

https://bitbucket.org/dkessner/forqs

Software for forward-in-time population genetics simulation that tracks individual haplotype chunks as they recombine each generation. It also also models quantitative traits and selection on those traits.

Proper citation: forqs (RRID:SCR_000643) Copy   


https://repository.niddk.nih.gov/study/21

Data and biological samples were collected by this consortium organizing international efforts to identify genes that determine an individual risk of type 1 diabetes. It originally focused on recruiting families with at least two siblings (brothers and/or sisters) who have type 1 diabetes (affected sibling pair or ASP families). The T1DGC completed enrollment for these families in August 2009. They completed enrollment of trios (father, mother, and a child with type 1 diabetes), as well as cases (people with type 1 diabetes) and controls (people with no history of type 1 diabetes) from populations with a low prevalence of this disease in January 2010. T1DGC Data and Samples: Phenotypic and genotypic data as well as biological samples (DNA, serum and plasma) for T1DGC participants have been deposited in the NIDDKCentral Repositories for future research.

Proper citation: Type 1 Diabetes Genetics Consortium (RRID:SCR_001557) Copy   


http://www.biopax.org/

Community standard for pathway data sharing. Standard language that aims to enable integration, exchange, visualization and analysis of biological pathway data. Supports data exchange between pathway data groups and thus reduces complexity of interchange between data formats by providing accepted standard format for pathway data. Open and collaborative effort by community of researchers, software developers, and institutions. BioPAX is defined in OWL DL and is represented in RDF/XML format.Uses W3C standard Web Ontology Language, OWL.

Proper citation: Biological Pathways Exchange (RRID:SCR_001681) Copy   


http://dictybase.org/

Model organism database for the social amoeba Dictyostelium discoideum that provides the biomedical research community with integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ''''reference genome'''' in the Amoebozoa clade. They highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase. The Dicty Stock Center currently holds over 1500 strains targeting over 930 different genes. There are over 100 different distinct amoebozoan species. In addition, the collection contains nearly 600 plasmids and other materials such as antibodies and cDNA libraries. The strain collection includes: * strain catalog * natural isolates * MNNG chemical mutants * tester strains for parasexual genetics * auxotroph strains * null mutants * GFP-labeled strains for cell biology * plasmid catalog The Dicty Stock Center can accept Dictyostelium strains, plasmids, and other materials relevant for research using Dictyostelium such as antibodies and cDNA or genomic libraries.

Proper citation: Dictyostelium discoideum genome database (RRID:SCR_006643) Copy   


http://www.informatics.jax.org/mgihome/GO/project.shtml

This resource is part of the Gene Ontology Consortium which seeks to provide controlled vocabularies for the description of the molecular function, biological process, and cellular component of gene products. These terms are to be used as attributes of gene products by collaborating databases, facilitating uniform queries across them. GO team members at MGI participate in ontology development, outreach, and functional curation of mouse gene products. The GO vocabularies have a hierarchical structure that permits a range of detail from high-level, broadly descriptive terms to very low level, highly specific terms. This broad range is useful both in annotating genes and in searching for gene information using these terms as search criteria. GO terms are defined, allowing all databases to use the terms consistently and properly. GO annotations in the databases additionally include the publication reference which allowed the association to be made and an evidence statement citing how the association was determined.

Proper citation: Mouse Genome Informatics: The Gene Ontology Project (RRID:SCR_006447) Copy   


  • RRID:SCR_006783

    This resource has 100+ mentions.

http://www.peptideatlas.org

Multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass spectrometer output files are collected for human, mouse, yeast, and several other organisms, and searched using the latest search engines and protein sequences. All results of sequence and spectral library searching are subsequently processed through the Trans Proteomic Pipeline to derive a probability of correct identification for all results in a uniform manner to insure a high quality database, along with false discovery rates at the whole atlas level. The raw data, search results, and full builds can be downloaded for other uses. All results of sequence searching are processed through PeptideProphet to derive a probability of correct identification for all results in a uniform manner ensuring a high quality database. All peptides are mapped to Ensembl and can be viewed as custom tracks on the Ensembl genome browser. The long term goal of the project is full annotation of eukaryotic genomes through a thorough validation of expressed proteins. The PeptideAtlas provides a method and a framework to accommodate proteome information coming from high-throughput proteomics technologies. The online database administers experimental data in the public domain. You are encouraged to contribute to the database.

Proper citation: PeptideAtlas (RRID:SCR_006783) Copy   


http://www.berkeleybop.org/

The BBOP, located at the Lawrence Berkeley National Labs, is a diverse group of scientific researchers and software engineers dedicated to developing tools and applying computational technologies to solve biological problems. Members of the group contribute to a number of projects, including the Gene Ontology, OBO Foundry, the Phenotypic Quality Ontology, modENCODE, and the Generic Model Organism Database Project. Our group is focused on the development, use, and integration of ontolgies into biological data analysis. Software written or maintained by BBOP is accessible through the site.

Proper citation: Berkeley Bioinformatics Open-Source Projects (RRID:SCR_006704) Copy   


  • RRID:SCR_002143

    This resource has 1000+ mentions.

http://amigo.geneontology.org/

Web tool to search, sort, analyze, visualize and download data of interest. Along with providing details of the ontologies, gene products and annotations, features a BLAST search, Term Enrichment and GO Slimmer tools, the GO Online SQL Environment and a user help guide.Used at the Gene Ontology (GO) website to access the data provided by the GO Consortium. Developed and maintained by the GO Consortium.

Proper citation: AmiGO (RRID:SCR_002143) Copy   


  • RRID:SCR_002103

    This resource has 10+ mentions.

http://www.pathwaycommons.org/pc

Database of publicly available pathways from multiple organisms and multiple sources represented in a common language. Pathways include biochemical reactions, complex assembly, transport and catalysis events, and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathways were downloaded directly from source databases. Each source pathway database has been created differently, some by manual extraction of pathway information from the literature and some by computational prediction. Pathway Commons provides a filtering mechanism to allow the user to view only chosen subsets of information, such as only the manually curated subset. The quality of Pathway Commons pathways is dependent on the quality of the pathways from source databases. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. It currently contains data from nine databases with over 1,668 pathways, 442,182 interactions,414 organisms and will be continually expanded and updated. (April 2013)

Proper citation: Pathway Commons (RRID:SCR_002103) Copy   


  • RRID:SCR_002105

    This resource has 10000+ mentions.

http://htslib.org/

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

Proper citation: SAMTOOLS (RRID:SCR_002105) Copy   


  • RRID:SCR_002580

    This resource has 50+ mentions.

http://www.biostars.org/

A question answer forum for scientists, focusing on methods in bioinformatics, computational genomics and biological data analysis. They welcome detailed and specific posts, written clearly and simply.

Proper citation: BioStar (RRID:SCR_002580) Copy   


  • RRID:SCR_003485

    This resource has 1000+ mentions.

http://www.reactome.org

Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.

Proper citation: Reactome (RRID:SCR_003485) Copy   


  • RRID:SCR_004463

    This resource has 10000+ mentions.

http://code.google.com/p/rna-star/

Software performing alignment of high-throughput RNA-seq data. Aligns RNA-seq reads to reference genome using uncompressed suffix arrays.

Proper citation: STAR (RRID:SCR_004463) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X