Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 445 results
Snippet view Table view Download 445 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_023789

    This resource has 10+ mentions.

https://pathvisio.org/

Software visualization tool for biological pathways. Pathway analysis and drawing software which allows drawing, editing, and analyzing biological pathways. Developed in Java and can be extended with plugins.

Proper citation: PathVisio (RRID:SCR_023789) Copy   


http://murphylab.web.cmu.edu/services/SLIF/

SLIF finds fluorescence microscope images in on-line journal articles, and indexes them according to cell line, proteins visualized, and resolution. Images can be accessed via the SLIF Web database. SLIF takes on-line papers and scans them for figures that contain fluorescence microscope images (FMIs). Figures typically contain multiple FMIs, to SLIF must segment these images into individual FMIs. When the FMI images are extracted, annotations for the images (for instance, names of proteins and cell-lines) are also extracted from the accompanying caption text. Protein annotation are also used to link to external databases, such as the Gene Ontology DB. The more detailed process includes: segmentation of images into panels; panel classification, to find FMIs; segmentation of the caption, to find which portions of the caption apply to which panels; text-based entity extraction; matching of extracted entities to database entries; extraction of panel labels from text and figures; and alignment of the text segments to the panels. Extracted FMIs are processed to find subcellular location features (SLFs), and the resulting analyzed, annotated figures are stored in a database, which is accessible via SQL queries.

Proper citation: Subcellular Location Image Finder (RRID:SCR_006723) Copy   


  • RRID:SCR_017496

    This resource has 100+ mentions.

http://www.mirtoolsgallery.org/miRToolsGallery/node/1055

Comprehensive resource of microRNA target predictions and expression profiles. Used for whole genome prediction of miRNA target genes. For each miRNA, target genes are selected on basis of sequence complementarity using position weighted local alignment algorithm, free energies of RNA-RNA duplexes, and conservation of target sites in related genomes. Provides information about set of genes potentially regulated by particular microRNA, co-occurrence of predicted target sites for multiple microRNAs in mRNA and microRNA expression profiles in tissues. Users are allowed to customize algorithm, numerical parameters, and position-specific rules., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: miRanda (RRID:SCR_017496) Copy   


  • RRID:SCR_017236

    This resource has 100+ mentions.

http://cisbp.ccbr.utoronto.ca

Software tool as catalog of inferred sequence binding preferences. Online library of transcription factors and their DNA binding motifs.

Proper citation: CIS-BP (RRID:SCR_017236) Copy   


  • RRID:SCR_016996

    This resource has 1+ mentions.

http://www.mrmatlas.org/

Resource of targeted proteomics assays to detect and quantify proteins in complex proteome digests by mass spectrometry. Used to quantify the complete human proteome.

Proper citation: SRMAtlas (RRID:SCR_016996) Copy   


  • RRID:SCR_022286

    This resource has 1+ mentions.

https://github.com/RabadanLab/arcasHLA

Software tool for high resolution HLA typing from RNAseq. Fast and accurate in silico inference of HLA genotypes from RNA-seq.

Proper citation: arcasHLA (RRID:SCR_022286) Copy   


  • RRID:SCR_021890

    This resource has 10+ mentions.

https://www.utsouthwestern.edu/labs/danuser/software/

Software package as quantitative image analysis software for measurement of microtubule dynamics. MATLAB software for tracking full dynamics of microtubules based on plusTIP marker live cell image sequences.

Proper citation: plusTipTracker (RRID:SCR_021890) Copy   


  • RRID:SCR_002134

    This resource has 1000+ mentions.

http://wikipathways.org/

Open and collaborative platform dedicated to curation of biological pathways. Each pathway has dedicated wiki page, displaying current diagram, description, references, download options, version history, and component gene and protein lists. Database of biological pathways maintained by and for scientific community.

Proper citation: WikiPathways (RRID:SCR_002134) Copy   


  • RRID:SCR_004182

    This resource has 1+ mentions.

http://avis.princeton.edu/pixie/index.php

bioPIXIE is a general system for discovery of biological networks through integration of diverse genome-wide functional data. This novel system for biological data integration and visualization, allows you to discover interaction networks and pathways in which your gene(s) (e.g. BNI1, YFL039C) of interest participate. The system is based on a Bayesian algorithm for identification of biological networks based on integrated diverse genomic data. To start using bioPIXIE, enter your genes of interest into the search box. You can use ORF names or aliases. If you enter multiple genes, they can be separated by commas or returns. Press ''submit''. bioPIXIE uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the bioPIXIE algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. As you move the mouse over genes in the network, interactions involving these genes are highlighted. If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed. You may need to download the Adobe Scalable Vector Graphic (SVG) plugin to utilize the visualization tool (you will be prompted if you need it).

Proper citation: bioPIXIE (RRID:SCR_004182) Copy   


http://zebrafinch.brainarchitecture.org/

Atlas of high resolution Nissl stained digital images of the brain of the zebra finch, the mainstay of songbird research. The cytoarchitectural high resolution photographs and atlas presented here aim at facilitating electrode placement, connectional studies, and cytoarchitectonic analysis. This initial atlas is not in stereotaxic coordinate space. It is intended to complement the stereotaxic atlases of Akutegawa and Konishi, and that of Nixdorf and Bischof. (Akutagawa E. and Konishi M., stereotaxic atalas of the brain of zebra finch, unpublished. and Nixdorf-Bergweiler B. E. and Bischof H. J., A Stereotaxic Atlas of the Brain Of the Zebra Finch, Taeniopygia Guttata, http://www.ncbi.nlm.nih.gov.) The zebra finch has proven to be the most widely used model organism for the study of the neurological and behavioral development of birdsong. A unique strength of this research area is its integrative nature, encompassing field studies and ethologically grounded behavioral biology, as well as neurophysiological and molecular levels of analysis. The availability of dimensionally accurate and detailed atlases and photographs of the brain of male and female animals, as well as of the brain during development, can be expected to play an important role in this research program. Traditionally, atlases for the zebra finch brain have only been available in printed format, with the limitation of low image resolution of the cell stained sections. The advantages of a digital atlas over a traditional paper-based atlas are three-fold. * The digital atlas can be viewed at multiple resolutions. At low magnification, it provides an overview of brain sections and regions, while at higher magnification, it shows exquisite details of the cytoarchitectural structure. * It allows digital re-slicing of the brain. The original photographs of brain were taken in certain selected planes of section. However, the brains are seldom sliced in exactly the same plane in real experiments. Re-slicing provides a useful atlas in user-chosen planes, which are otherwise unavailable in the paper-based version. * It can be made available on the internet. High resolution histological datasets can be independently evaluated in light of new experimental anatomical, physiological and molecular studies.

Proper citation: Zebrafinch Brain Architecture Project (RRID:SCR_004277) Copy   


  • RRID:SCR_004450

    This resource has 50+ mentions.

http://www.ebi.ac.uk/thornton-srv/databases/profunc/index.html

The ProFunc server had been developed to help identify the likely biochemical function of a protein from its three-dimensional structure. It uses both sequence- and structure-based methods including fold matching, residue conservation, surface cleft analysis, and functional 3D templates, to identify both the protein''''s likely active site and possible homologues in the PDB. Often, where one method fails to provide any functional insight another may be more helpful. You can submit your own structure, analyze an existing PDB entry, or retrieve the results of a previously submitted run. The files are usually stored for about 6 months before being deleted. However, they are stored on a partition that is not backed up; so, in principle, they could disappear at any time.

Proper citation: ProFunc (RRID:SCR_004450) Copy   


  • RRID:SCR_002957

    This resource has 10+ mentions.

http://ophid.utoronto.ca/i2d

Database of known and predicted mammalian and eukaryotic protein-protein interactions, it is designed to be both a resource for the laboratory scientist to explore known and predicted protein-protein interactions, and to facilitate bioinformatics initiatives exploring protein interaction networks. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered predictions. It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. It contains 490,600 Source Interactions, 370,002 Predicted Interactions, for a total of 846,116 interactions, and continues to expand as new protein-protein interaction data becomes available.

Proper citation: I2D (RRID:SCR_002957) Copy   


  • RRID:SCR_002792

    This resource has 1+ mentions.

http://diseasome.eu

A disease / disorder relationships explorer and a sample of a map-oriented scientific work. It uses the Human Disease Network dataset and allows intuitive knowledge discovery by mapping its complexity. The Human Disease Network (official) dataset, a poster of the data and related book (Biology - The digital era, ISBN: 978-2-271-06779-1) are available. This kind of data has a network-like organization, and relations between elements are at least as important as the elements themselves. More data could be integrated to this prototype and could eventually bring closer phenotype and genotype. Results should be visual, but also printable. Creating posters can enhance collaborative work. It facilitates discussion and sharing of ideas about the data. This website initiative is an invitation to think about the benefits of networks exploration but above all it tries to outline future designs of scientific information systems.

Proper citation: Diseasome (RRID:SCR_002792) Copy   


http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl

Database of embryonic expression patterns using a high throughput RNA in situ hybridization of the protein-coding genes identified in the Drosophila melanogaster genome with images and controlled vocabulary annotations. At the end of production pipeline gene expression patterns are documented by taking a large number of digital images of individual embryos. The quality and identity of the captured image data are verified by independently derived microarray time-course analysis of gene expression using Affymetrix GeneChip technology. Gene expression patterns are annotated with controlled vocabulary for developmental anatomy of Drosophila embryogenesis. Image, microarray and annotation data are stored in a modified version of Gene Ontology database and the entire dataset is available on the web in browsable and searchable form or MySQL dump can be downloaded. So far, they have examined expression of 7507 genes and documented them with 111184 digital photographs.

Proper citation: Patterns of Gene Expression in Drosophila Embryogenesis (RRID:SCR_002868) Copy   


http://function.princeton.edu/GOLEM/index.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented July 7, 2017. Welcome to the home of GOLEM: An interactive, graphical gene-ontology visualization, navigation,and analysis tool on the web. GOLEM is a useful tool which allows the viewer to navigate and explore a local portion of the Gene Ontology (GO) hierarchy. Users can also load annotations for various organisms into the ontology in order to search for particular genes, or to limit the display to show only GO terms relevant to a particular organism, or to quickly search for GO terms enriched in a set of query genes. GOLEM is implemented in Java, and is available both for use on the web as an applet, and for download as a JAR package. A brief tutorial on how to use GOLEM is available both online and in the instructions included in the program. We also have a list of links to libraries used to make GOLEM, as well as the various organizations that curate organism annotations to the ontology. GOLEM is available as a .jar package and a macintosh .app for use on- or off- line as a stand-alone package. You will need to have Java (v.1.5 or greater) installed on your system to run GOLEM. Source code (including Eclipse project files) are also available. GOLEM (Gene Ontology Local Exploration Map)is a visualization and analysis tool for focused exploration of the gene ontology graph. GOLEM allows the user to dynamically expand and focus the local graph structure of the gene ontology hierarchy in the neighborhood of any chosen term. It also supports rapid analysis of an input list of genes to find enriched gene ontology terms. The GOLEM application permits the user either to utilize local gene ontology and annotations files in the absence of an Internet connection, or to access the most recent ontology and annotation information from the gene ontology webpage. GOLEM supports global and organism-specific searches by gene ontology term name, gene ontology id and gene name. CONCLUSION: GOLEM is a useful software tool for biologists interested in visualizing the local directed acyclic graph structure of the gene ontology hierarchy and searching for gene ontology terms enriched in genes of interest. It is freely available both as an application and as an applet.

Proper citation: GOLEM An interactive, graphical gene-ontology visualization, navigation, and analysis tool (RRID:SCR_003191) Copy   


  • RRID:SCR_003207

    This resource has 100+ mentions.

http://www.emdataresource.org/

Portal for deposition and retrieval of cryo electron microscopy (3DEM) density maps, atomic models, and associated metadata. Global resource for 3 Dimensional Electron Microscopy structure data archiving and retrieval, news, events, software tools, data standards, validation methods.

Proper citation: EMDataResource.org (RRID:SCR_003207) Copy   


http://dip.doe-mbi.ucla.edu/

Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.

Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy   


  • RRID:SCR_003201

    This resource has 1000+ mentions.

http://www.broadinstitute.org/cancer/software/genepattern

A powerful genomic analysis platform that provides access to hundreds of tools for gene expression analysis, proteomics, SNP analysis, flow cytometry, RNA-seq analysis, and common data processing tasks. A web-based interface provides easy access to these tools and allows the creation of multi-step analysis pipelines that enable reproducible in silico research.

Proper citation: GenePattern (RRID:SCR_003201) Copy   


  • RRID:SCR_003357

    This resource has 1+ mentions.

http://mouseNET.princeton.edu

A functional network for laboratory mouse based on integration of diverse genetic and genomic data. It allows the users to accurately predict novel functional assignments and network components. MouseNET uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the mouseNET algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. The graph may be explored further. As you move the mouse over genes in the network, interactions involving these genes are highlighted.If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed.

Proper citation: MouseNET (RRID:SCR_003357) Copy   


http://rostlab.org/services/nlsdb/

A database of nuclear localization signals (NLSs) and of nuclear proteins targeted to the nucleus by NLS motifs. NLSs are short stretches of residues mediating transport of nuclear proteins into the nucleus. The database contains 114 experimentally determined NLSs that were obtained through an extensive literature search. Using "in silico mutagenesis" this set was extended to 308 experimental and potential NLSs. This final set matched over 43% of all known nuclear proteins and matches no currently known non-nuclear protein. NLSdb contains over 6000 predicted nuclear proteins and their targeting signals from the PDB and SWISS-PROT/TrEMBL databases. The database also contains over 12 500 predicted nuclear proteins from six entirely sequenced eukaryotic proteomes (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae). NLS motifs often co-localize with DNA-binding regions. This observation was used to also annotate over 1500 DNA-binding proteins. From this site you can: * Query NLSdb * Find out how to use NLSdb * Browse the entries in NLSdb * Find out if your protein has an NLS using PredictNLS * Predict subcellular localization of your protein using LOCtree

Proper citation: NLSdb: a database of nuclear localization signals (RRID:SCR_003273) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X