Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.snubi.org/software/GOChase/
GOChase is a set of web-based utilities to detect and correct the errors in GO-based annotations. # GOChase-History resolves the whole modification history of GO IDs. # GOChase-Correct highlights merged GO IDs and redirects to the correct primary term into which the secondary ID was merged. For obsolete GO terms, the nearest non-discarded parent term is recommended by GOChase. This function may be used by GO browsers such as AmiGO and QuickGO to fix broken hyperlinks. # A whole database (such as LocusLink) as a flat file can be loaded into GOChase, reporting the annotation errors and GOChase corrections. # When one inputs a GO ID, GOChase will resolve all gene products annotated with the GO ID across all the major databases. Platform: Online tool
Proper citation: GOChase (RRID:SCR_005822) Copy
http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl
The GO Slim Mapper (aka GO Term Mapper) maps the specific, granular GO terms used to annotate a list of budding yeast gene products to corresponding more general parent GO slim terms. Uses the SGD GO Slim sets. Three GO Slim sets are available at SGD: * Macromolecular complex terms: protein complex terms from the Cellular Component ontology * Yeast GO-Slim: GO terms that represent the major Biological Processes, Molecular Functions, and Cellular Components in S. cerevisiae * Generic GO-Slim: broad, high level GO terms from the Biological Process and Cellular Component ontologies selected and maintained by the Gene Ontology Consortium (GOC) Platform: Online tool
Proper citation: SGD Gene Ontology Slim Mapper (RRID:SCR_005784) Copy
http://lussierlab.org/GO-Module/GOModule.cgi
GO-Module provides an interface to reduce the dimensionality of GO enrichment results and produce interpretable biomodules of significant GO terms organized by hierarchical knowledge that contain only true positive results. Users can download a text file of GO terms annotated with their significance and identified biomodules, a network visualization of resultant GO IDs or terms in PDF format, and view results in an online table. Platform: Online tool
Proper citation: GO-Module (RRID:SCR_005813) Copy
http://www.agbase.msstate.edu/cgi-bin/tools/GOanna.cgi
GOanna is used to find annotations for proteins using a similarity search. The input can be a list of IDs or it can be a list of sequences in FASTA format. GOanna will retrieve the sequences if necessary and conduct the specified BLAST search against a user-specified database of GO annotated proteins. The resulting file contains GO annotations of the top BLAST hits. The sequence alignments are also provided so the user can use these to access the quality of the match. Platform: Online tool
Proper citation: GOanna (RRID:SCR_005684) Copy
http://genetrail.bioinf.uni-sb.de/
A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GeneTrail (RRID:SCR_006250) Copy
http://xldb.fc.ul.pt/biotools/rebil/ssm/
FuSSiMeG is being discontinued, may not be working properly. Please use our new tool ProteinOn. Functional Semantic Similarity Measure between Gene Products (FuSSiMeG) provides a functional similarity measure between two proteins using the semantic similarity between the GO terms annotated with the proteins. Platform: Online tool
Proper citation: FuSSiMeG: Functional Semantic Similarity Measure between Gene-Products (RRID:SCR_005738) Copy
http://omicslab.genetics.ac.cn/GOEAST/
Gene Ontology Enrichment Analysis Software Toolkit (GOEAST) is a web based software toolkit providing easy to use, visualizable, comprehensive and unbiased Gene Ontology (GO) analysis for high-throughput experimental results, especially for results from microarray hybridization experiments. The main function of GOEAST is to identify significantly enriched GO terms among give lists of genes using accurate statistical methods. Compared with available GO analysis tools, GOEAST has the following unique features: * GOEAST supports analysis for data from various resources, such as expression data obtained using Affymetrix, illumina, Agilent or customized microarray platforms. GOEAST also supports non-microarray based experimental data. The web-based feature makes GOEAST very user friendly; users only have to provide a list of genes in correct formats. * GOEAST provides visualizable analysis results, by generating graphs exhibiting enriched GO terms as well as their relationships in the whole GO hierarchy. * Note that GOEAST generates separate graph for each of the three GO categories, namely biological process, molecular function and cellular component. * GOEAST allows comparison of results from multiple experiments (see Multi-GOEAST tool). The displayed color of each GO term node in graphs generated by Multi-GOEAST is the combination of different colors used in individual GOEAST analysis. Platform: Online tool
Proper citation: GOEAST - Gene Ontology Enrichment Analysis Software Toolkit (RRID:SCR_006580) Copy
http://cbl-gorilla.cs.technion.ac.il/
A tool for identifying and visualizing enriched GO terms in ranked lists of genes. It can be run in one of two modes: * Searching for enriched GO terms that appear densely at the top of a ranked list of genes or * Searching for enriched GO terms in a target list of genes compared to a background list of genes.
Proper citation: GOrilla: Gene Ontology Enrichment Analysis and Visualization Tool (RRID:SCR_006848) Copy
GOstat is a tool that allows you to find statistically overrepresented Gene Ontologies within a group of genes. The Gene-Ontology database (GO: http://www.geneontology.org) provides a useful tool to annotate and analyze the function of large numbers of genes. Modern experimental techniques, as e.g. DNA microarrays, often result in long lists of genes. To learn about the biology in this kind of data it is desirable to find functional annotation or Gene-Ontology groups which are highly represented in the data. This program (GOstat) should help in the analysis of such lists and will provide statistics about the GO terms contained in the data and sort the GO annotations giving the most representative GO terms first. Run GOstat: * Go to search form - Computes GO statistics of a list of genes selected from a microarray. * GOstat Display - You can store results from a previously run and view them here, either by uploading them as a file or putting them on a selected URL. * Upload Custom GO Annotations - This allows you to upload your own GO annotation database and use it with GOstat. Variants of GOstat: * Rank GOstat - Takes input from all genes on microarray instead of using a fixed cutoff and uses ranks using a Wilcoxon test or either ranks or pvalues to score GOs using Kolmogorov-Smirnov statistics. * Gene Abundance GOstats - Takes input from all genes on microarray and sums up the gene abundances for each GO to compute statistics. * Two list GOstat - Compares GO statistics in two independent lists of genes, not necessarily one of them being the complete list the other list is sampled from. Platform: Online tool, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GOstat (RRID:SCR_008535) Copy
Web application that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. It can also be accessed through its web service.
Proper citation: GeneTerm Linker (RRID:SCR_006385) Copy
http://bioinformatics.intec.ugent.be/magic/
Web based interface for exploring and analyzing a comprehensive maize-specific cross-platform expression compendium. This compendium was constructed by collecting, homogenizing and formally annotating publicly available microarrays from Gene Expression Omnibus (GEO), and ArrayExpress.
Proper citation: Magic (RRID:SCR_006406) Copy
A web-based platform for functional interpretation of gene sets with features such as cross-species Gene Set Analysis (GSA), Flexible and Interactive GSA, simultaneous GSA for multiple gene set, and and a fully integrated network viewer for both visualizing GSA results and molecular networks.
Proper citation: gsGator (RRID:SCR_012035) Copy
http://www.cdtdb.brain.riken.jp/CDT/Top.jsp
Transcriptomic information (spatiotemporal gene expression profile data) on the postnatal cerebellar development of mice (C57B/6J & ICR). It is a tool for mining cerebellar genes and gene expression, and provides a portal to relevant bioinformatics links. The mouse cerebellar circuit develops through a series of cellular and morphological events, including neuronal proliferation and migration, axonogenesis, dendritogenesis, and synaptogenesis, all within three weeks after birth, and each event is controlled by a specific gene group whose expression profile must be encoded in the genome. To elucidate the genetic basis of cerebellar circuit development, CDT-DB analyzes spatiotemporal gene expression by using in situ hybridization (ISH) for cellular resolution and by using fluorescence differential display and microarrays (GeneChip) for developmental time series resolution. The CDT-DB not only provides a cross-search function for large amounts of experimental data (ISH brain images, GeneChip graph, RT-PCR gel images), but also includes a portal function by which all registered genes have been provided with hyperlinks to websites of many relevant bioinformatics regarding gene ontology, genome, proteins, pathways, cell functions, and publications. Thus, the CDT-DB is a useful tool for mining potentially important genes based on characteristic expression profiles in particular cell types or during a particular time window in developing mouse brains.
Proper citation: Cerebellar Development Transcriptome Database (RRID:SCR_013096) Copy
http://function.princeton.edu/GOLEM/index.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented July 7, 2017. Welcome to the home of GOLEM: An interactive, graphical gene-ontology visualization, navigation,and analysis tool on the web. GOLEM is a useful tool which allows the viewer to navigate and explore a local portion of the Gene Ontology (GO) hierarchy. Users can also load annotations for various organisms into the ontology in order to search for particular genes, or to limit the display to show only GO terms relevant to a particular organism, or to quickly search for GO terms enriched in a set of query genes. GOLEM is implemented in Java, and is available both for use on the web as an applet, and for download as a JAR package. A brief tutorial on how to use GOLEM is available both online and in the instructions included in the program. We also have a list of links to libraries used to make GOLEM, as well as the various organizations that curate organism annotations to the ontology. GOLEM is available as a .jar package and a macintosh .app for use on- or off- line as a stand-alone package. You will need to have Java (v.1.5 or greater) installed on your system to run GOLEM. Source code (including Eclipse project files) are also available. GOLEM (Gene Ontology Local Exploration Map)is a visualization and analysis tool for focused exploration of the gene ontology graph. GOLEM allows the user to dynamically expand and focus the local graph structure of the gene ontology hierarchy in the neighborhood of any chosen term. It also supports rapid analysis of an input list of genes to find enriched gene ontology terms. The GOLEM application permits the user either to utilize local gene ontology and annotations files in the absence of an Internet connection, or to access the most recent ontology and annotation information from the gene ontology webpage. GOLEM supports global and organism-specific searches by gene ontology term name, gene ontology id and gene name. CONCLUSION: GOLEM is a useful software tool for biologists interested in visualizing the local directed acyclic graph structure of the gene ontology hierarchy and searching for gene ontology terms enriched in genes of interest. It is freely available both as an application and as an applet.
Proper citation: GOLEM An interactive, graphical gene-ontology visualization, navigation, and analysis tool (RRID:SCR_003191) Copy
A functional network for laboratory mouse based on integration of diverse genetic and genomic data. It allows the users to accurately predict novel functional assignments and network components. MouseNET uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the mouseNET algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. The graph may be explored further. As you move the mouse over genes in the network, interactions involving these genes are highlighted.If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed.
Proper citation: MouseNET (RRID:SCR_003357) Copy
http://www.informatics.jax.org/searches/GO_form.shtml
With the MGI GO Browser, you can search for a GO term and view all mouse genes annotated to the term or any subterms. You can also browse the ontologies to view relationships between terms, term definitions, as well as the number of mouse genes annotated to a given term and its subterms. The MGI GO browser directly accesses the GO data in the MGI database, which is updated nightly. Platform: Online tool
Proper citation: MGI GO Browser (RRID:SCR_006489) Copy
http://www.ebi.ac.uk/ontology-lookup/
Interactive and programmatic interfaces to query, browse and navigate an increasing number of biomedical ontologies and controlled vocabularies. It provides a web service interface to query multiple ontologies from a single location with a unified output format. It can integrate any ontology available in the Open Biomedical Ontology (OBO) format. The database can be queried to obtain information on a single term or to browse a complete ontology using AJAX. Auto-completion provides a user-friendly search mechanism. An AJAX-based ontology viewer is available to browse a complete ontology or subsets of it. A weekly MySQL database export file can be downloaded from the EBI public FTP directory.
Proper citation: Ontology Lookup Service (RRID:SCR_006596) Copy
http://sourceforge.net/p/fastsemsim/home/Home/
A package that implements several semantic similarity measures. It is both a library and an end-user application, featuring an intuitive graphical user interface (GUI). It has been implemented with the aim of being fast, expandable, and easy to use. It allows the user to work with the most updated version of GO database and customizable annotation corpora. It provides a set of logically-organized classes that can be easily exploited to both integrate semantic similarity into different analysis pipelines and extend the library with new measures. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FastSemSim (RRID:SCR_006919) Copy
http://geneontology.org/docs/tools-overview/
Collection of tools developed by GO Consortium and by third parties. Tools are listed by category or alphabetically and continue to be improved and expanded.
Proper citation: Gene Ontology Tools (RRID:SCR_006941) Copy
http://autismkb.cbi.pku.edu.cn/
Genetic factors contribute significantly to ASD. AutismKB is an evidence-based knowledgebase of Autism spectrum disorder (ASD) genetics. The current version contains 2193 genes (99 syndromic autism related genes and 2135 non-syndromic autism related genes), 4617 Copy Number Variations (CNVs) and 158 linkage regions associated with ASD by one or more of the following six experimental methods: # Genome-Wide Association Studies (GWAS); # Genome-wide CNV studies; # Linkage analysis; # Low-scale genetic association studies; # Expression profiling; # Other low-scale gene studies. Based on a scoring and ranking system, 99 syndromic autism related genes and 383 non-syndromic autism related genes (434 genes in total) were designated as having high confidence. Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a prevalence of 1.0-2.6%. The three core symptoms of ASD are: # impairments in reciprocal social interaction; # communication impairments; # presence of restricted, repetitive and stereotyped patterns of behavior, interests and activities.
Proper citation: AutismKB (RRID:SCR_006937) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.