Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 5 showing 81 ~ 100 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection

http://bond.unleashedinformatics.com/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.BOND, which requires registration of a free account, is a resource used to perform cross-database searches of available sequence, interaction, complex and pathway information. BOND integrates a range of component databases including GenBank and BIND, the Biomolecular Interaction Network Database. BOND contains 70+ million biological sequences, 33,000 structures, 38,000 GO terms, and over 200,000 human curated interactions contained in BIND, and is open access. BOND serves the interests of the developing global interactome effort encompassing the genomic, proteomic and metabolomic research communities. BOND is the first open access search resource to integrate sequence and interaction information. BOND integrates BLAST functionality, and contains a well-documented API. BOND also stores annotation links for sequences, including links to Genome Ontology descriptions, MedLine abstracts, taxon identifiers, associated structures, redundant sequences, sequence neighbors, conserved domains, data base cross-references, Online Mendalian Inheritance in Man identifiers, LocusLink identifiers and complete genomes. BIND on BOND The Biomolecular Interaction Network Database (BIND), a component database of BOND, is a collection of records documenting molecular interactions. The contents of BIND include high-throughput data submissions and hand-curated information gathered from the scientific literature. BIND is an interaction database with three classifications for molecular associations: molecules that associate with each other to form interactions, molecular complexes that are formed from one or more interaction(s) and pathways that are defined by a specific sequence of two or more interactions.Interactions A BIND record represents an interaction between two or more objects that is believed to occur in a living organism. A biological object can be a protein, DNA, RNA, ligand, molecular complex, gene, photon or an unclassified biological entity. BIND records are created for interactions which have been shown experimentally and published in at least one peer-reviewed journal. A record also references any papers with experimental evidence that support or dispute the associated interaction. Interactions are the basic units of BIND and can be linked together to form molecular complexes or pathways. The BIND interaction viewer is a tool to visualize and analyze molecular interactions, complexes and pathways. The BIND interaction viewer uses Ontoglyphs to display information about a protein via attributes such as molecular function, biological process and sub-cellular localization. Ontoglyphs allow to graphically and interactively explore interaction networks, by visualizing interactions in the context of 34 functional, 25 binding specificity and 24 sub-cellular localization Ontoglyphs categories. We will continue to provide an open access version of BOND, providing its subscribers with free, unlimited access to a core content set. But we are confident you will soon want to upgrade to BONDplus.

Proper citation: Biomolecular Object Network Databank (RRID:SCR_007433) Copy   


  • RRID:SCR_007545

    This resource has 1+ mentions.

http://biobases.ibch.poznan.pl/5SData/

A database on nucleotide sequences of 5S rRNAs and their genes. The database contains 1985 primary structures of 5S rRNA and 5S rDNA, and was last updated in 2002, according to the website. They include 60 archaebacterial, 470 eubacterial, 63 plastid, nine mitochondrial and 1383 eukaryotic sequences. The nucleotide sequences of the 5S rRNAs or 5S rDNAs are divided according to the taxonomic position of the source organisms. The sequences for particular organisms can be retrieved as single files using a taxonomic browser or in multiple sequence structural alignments. The multiple sequence alignments of 5S ribosomal RNAs can be downloaded in TAB-delimited and FASTA formats.

Proper citation: 5S Ribosomal RNA Database (RRID:SCR_007545) Copy   


http://mips.gsf.de/genre/proj/ustilago/

The MIPS Ustilago maydis Genome Database aims to present information on the molecular structure and functional network of the entirely sequenced, filamentous fungus Ustilago maydis. The underlying sequence is the initial release of the high quality draft sequence of the Broad Institute. The goal of the MIPS database is to provide a comprehensive genome database in the Genome Research Environment in parallel with other fungal genomes to enable in depth fungal comparative analysis. The specific aims are to: 1. Generate and assemble Whole Genome Shotgun sequence reads yielding 10X coverage of the U. maydis genome 2. Integrate the genomic sequence assembly with physical maps generated by Bayer CropScience 3. Perform automated annotation of the sequence assembly 4. Align the strain 521 assembly with the FB1 assembly provided by Exelixis 5. Release the sequence assembly and results of our annotation and analysis to public Ustilago maydis is a basidiomycete fungal pathogen of maize and teosinte. The genome size is approximately 20 Mb. The fungus induces tumors on host plants and forms masses of diploid teliospores. These spores germinate and form haploid meiotic products that can be propagated in culture as yeast-like cells. Haploid strains of opposite mating type fuse and form a filamentous, dikaryotic cell type that invades plant tissue to reinitiate infection. Ustilago maydis is an important model system for studying pathogen-host interactions and has been studied for more than 100 years by plant pathologists. Molecular genetic research with U. maydis focuses on recombination, the role of mating in pathogenesis, and signaling pathways that influence virulence. Recently, the fungus has emerged as an excellent experimental model for the molecular genetic analysis of phytopathogenesis, particularly in the characterization of infection-specific morphogenesis in response to signals from host plants. Ustilago maydis also serves as an important model for other basidiomycete plant pathogens that are more difficult to work with in the laboratory, such as the rust and bunt fungi. Genomic sequence of U. maydis will also be valuable for comparative analysis of other fungal genomes, especially with respect to understanding the host range of fungal phytopathogens. The analysis of U. maydis would provide a framework for studying the hundreds of other Ustilago species that attack important crops, such as barley, wheat, sorghum, and sugarcane. Comparisons would also be possible with other basidiomycete fungi, such as the important human pathogen C. neoformans. Commercially, U. maydis is an excellent model for the discovery of antifungal drugs. In addition, maize tumors caused by U. maydis are prized in Hispanic cuisine and there is interest in improving commercial production. The complete putative gene set of the Broad Institute''s second release is loaded into the database and in addition all deviating putative genes from a putative gene set produced by MIPS with different gene prediction parameters are also loaded. The complete dataset will then be analysed, gene predictions will be manually corrected due to combined information derived from different gene prediction algorithms and, more important, protein and EST comparisons. Gene prediction will be restricted to ORFs larger than 50 codons; smaller ORFs will be included only if similarities to other proteins or EST matches confirm their existence or if a coding region was postulated by all prediction programs used. The resulting proteins will be annotated. They will be classified according to the MIPS classification catalogue receiving appropriate descriptions. All proteins with a known, characterized homolog will be automatically assigned to functional categories using the MIPS functional catalog. All extracted proteins are in addition automatically analysed and annotated by the PEDANT suite.

Proper citation: MIPS Ustilago maydis Database (RRID:SCR_007563) Copy   


  • RRID:SCR_007691

    This resource has 500+ mentions.

http://www.ebi.ac.uk/GOA

An annotation program which aims to provide high-quality Gene Ontology (GO) annotations to proteins in the UniProt Knowledgebase (UniProtKB) and International Protein Index (IPI). It is a central dataset for other major multi-species databases, such as Ensembl and NCBI. Because of the multi-species nature of the UniProtKB, UniProtKB-GOA assists in the curation of 200,000 species. This involves electronic annotation and the integration of high-quality manual GO annotation from all GO Consortium model organism groups and specialist groups. Gene Association Files can be accessed from the Downloads section of the website.

Proper citation: GOA (RRID:SCR_007691) Copy   


  • RRID:SCR_007955

    This resource has 1+ mentions.

http://systers.molgen.mpg.de/

SYSTERS is a database of protein sequences grouped into homologous families and superfamilies. The SYSTERS project aims to provide a meaningful partitioning of the whole protein sequence space by a fully automatic procedure. A refined two-step algorithm assigns each protein to a family and a superfamily. The sequence data underlying SYSTERS release 4 now comprise several protein sequence databases derived from completely sequenced genomes (ENSEMBL, TAIR, SGD and GeneDB), in addition to the comprehensive Swiss-Prot/TrEMBL databases. To augment the automatically derived results, information from external databases like Pfam and Gene Ontology are added to the web server. Furthermore, users can retrieve pre-processed analyses of families like multiple alignments and phylogenetic trees. New query options comprise a batch retrieval tool for functional inference about families based on automatic keyword extraction from sequence annotations. A new access point, PhyloMatrix, allows the retrieval of phylogenetic profiles of SYSTERS families across organisms with completely sequenced genomes. Gene, Human, Vertebrate, Genome, Human ORFs

Proper citation: SYSTERS (RRID:SCR_007955) Copy   


  • RRID:SCR_000514

http://www.sanger.ac.uk/cgi-bin/teams/team30/arnie

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 1,2023. Database that integrates the extracellular protein interaction network generated in our lab using AVEXIS technology with spatiotemporal expression patterns for all genes in the network. The tool allows users to browse the network by clicking on individual proteins, or by specifying the spatiotemporal parameters. Clicking on connector lines will allow users to compare stage-matched expression patterns for genes encoding interacting proteins. Additionally, users can rapidly search for their genes in the network using the BLAST server provided.

Proper citation: ARNIE (RRID:SCR_000514) Copy   


http://lifespandb.sageweb.org/

Database that collects published lifespan data across multiple species. The entire database is available for download in various formats including XML, YAML and CSV.

Proper citation: Lifespan Observations Database (RRID:SCR_001609) Copy   


  • RRID:SCR_001608

    This resource has 10+ mentions.

http://www.flyprot.org/

Allows annotation of gene expression at all stages of development and tissue types (including sub cellular location) using standard Drosophila anatomy ontology. All methods of input use a controlled vocabulary to ensure data integrity.

Proper citation: Flannotator (RRID:SCR_001608) Copy   


http://cddb.nhlbi.nih.gov/cddb/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. This database is intended to serve as a learning tool to obtain curated information for the design of microarray targets to scan collecting duct tissues (human, rat, mouse). The database focuses on regulatory and transporter proteins expressed in the collecting duct, but when collecting duct proteins are a member of a larger family of proteins, common additional members of the family are included even if they have not been demonstrated to be expressed in the collecting duct. An Internet-accessible database has been devised for major collecting duct proteins involved in transport and regulation of cellular processes. The individual proteins included in this database are those culled from literature searches and from previously published studies involving cDNA arrays and serial analysis of gene expression (SAGE). Design of microarray targets for the study of kidney collecting duct tissues is facilitated by the database, which includes links to curated base pair and amino acid sequence data, relevant literature, and related databases. Use of the database is illustrated by a search for water channel proteins, aquaporins, and by a subsequent search for vasopressin receptors. Links are shown to the literature and to sequence data for human, rat, and mouse, as well as to relevant web-based resources. Extension of the database is dynamic and is done through a maintenance interface. This permits creation of new categories, updating of existing entries, and addition of new ones. CDDB is a database that organizes lists of genes found in collecting duct tissues from three mammalian species: human, rat, and mouse. Proteins are divided into categories by family relationships and functional classification, and each category is assigned a section in the database. Each section includes links to the literature and to sequence information for genes, proteins, expressed sequence tags, and related information. The user can peruse a section or use a search engine at the bottom of the web page to search the database for a name or abbreviation or for a link to a sequence. Each entry in the database includes links to relevant papers in the kidney and collecting duct literature. It uses links to PubMed to generate MEDLINE searches for retrieval of references. In addition, each entry includes links to curated sequence data available in LocusLink. Individual links are made to sequence and protein data for human, rat, and mouse. Links are then added as curated sequences become available for proteins identified in the renal collecting duct and for proteins identified in kidney and similar in function or homologous to proteins identified in the collecting duct.

Proper citation: Collecting Duct Database (RRID:SCR_000759) Copy   


  • RRID:SCR_001629

    This resource has 50+ mentions.

http://cmbi.bjmu.edu.cn/mirsnp

Database of human SNPs in predicted miRNA-mRNA binding sites, based on information from dbSNP135 and mirBASE18. MirSNP is highly sensitive and covers most experiments confirmed SNPs that affect miRNA function. MirSNP may be combined with researchers' own GWAS or eQTL positive data sets to identify the putative miRNA-related SNPs from traits/diseases associated variants. They aim to update the MirSNP database as new versions of mirBASE and dbSNP database become available.

Proper citation: MirSNP (RRID:SCR_001629) Copy   


  • RRID:SCR_001618

    This resource has 100+ mentions.

https://gtexportal.org/home/

Database and browser that provides a central resource to archive and display association between genetic variation and high-throughput molecular-level phenotypes. This effort originated with the NIH GTEx roadmap project: however the scope of this resource will be extended to include any available genotype/molecular phenotype datasets.

Proper citation: GTEx eQTL Browser (RRID:SCR_001618) Copy   


http://magest.hgc.jp/

A database for maternal gene expression information for ascidia, colloquially known as sea squirts. Information available includes DNA sequences, expression patterns of ESTs, and cDNA data from uncleaved fertilized eggs. The goal is to utilize the database to understand molecular mechanisms of establishment of embryonic body plans of chordates and to understand evolution from invertebrates to vertebrates in the future.

Proper citation: MAboya Gene Expression Patterns and Sequence Tags (RRID:SCR_000763) Copy   


  • RRID:SCR_001372

    This resource has 1+ mentions.

https://fungi.ensembl.org/Neurospora_crassa/Info/Index

It's strategy involves Whole Genome Shotgun (WGS) sequencing, in which sequence from the entire genome is generated and reassembled. This method is standard for microbial genome sequencing, and has been successfully applied to Drosophila. Neurospora is an ideal candidate for this approach because of the low repeat content of the genome. Neurospora crassa Database has expanded the scope of its database by including a mitochondrial annotation, incorporating information from the Neurospora compendium, and assigning NCU numbers to tRNA and rRNAs. They have improved the annotation process to predict untranslated regions and to reduce the number of spurious predictions. As a result, version 3 contains 9,826 genes, 794 fewer than version 2. During the initial phase of a WGS project they sequence both ends of the 4 kb inserts from a plasmid library prepared using randomly sheared and sized-selected DNA. The shotgun reads are assembled by recognizing overlapping regions of sequence and making use of the knowledge of the orientation and distance of the paired reads from each plasmid. Obtaining deep sequence coverage though high levels of sequence redundancy assures that the majority of the genome is represented in the initial assembly and that the consensus sequence is of high quality. Their approach toward the initial assembly was conservative, meaning they would rather fail to join sequence contigs that might overlap each other than risk making false joins between two closely related but non-overlapping genomic regions. Hence, the initial assembly contains many sequence contigs and over time these contigs will increase in size and decrease in number as they are joined together. After shotgun sequencing and assembly there was a second phase of sequencing in which additional sequence was obtained from specific regions that were missing from the original assembly or are recognized to be of low quality in the consensus. The Neurospora crassa sequencing project reflects a close collaboration between the Broad Institute and the Neurospora research community. Principal investigators include Bruce Birren and Chad Nusbaum from the Broad Institute, Matt Sachs at the Oregon Graduate Institute of Science and Technology, Chuck Staben at the University of Kentucky and Jak Kinsey at the Fungal Genetics Stock Center at the University of Kansas Medical Center. In addition, we have a larger Advisory Board made up of a number of Neurospora researchers. Sponsors: They have been funded by the National Science Foundation to sequence the N. crassa genome and make the information publicly available.

Proper citation: Neurospora crassa Database (RRID:SCR_001372) Copy   


  • RRID:SCR_001142

    This resource has 1+ mentions.

http://hscl.cimr.cam.ac.uk/bloodexpress/

A database of gene expression in mouse haematopoiesis, integrating 271 individual microarray experiments derived from 15 distinct studies done on most characterized mouse blood cell types. Gene expression information has been discretized to absent/present/unknown calls. It supports gene-centric searches to find out where a gene of interest is expressed, and what other genes follow the same (or a similar) pattern of expression. It also supports cell-centric searches to find out what genes are expressed in specific cell types/studies and not others.

Proper citation: BloodExpress (RRID:SCR_001142) Copy   


  • RRID:SCR_005412

http://exon.cshl.org/cgi-bin/atprobe/atprobe.pl

Arabidopsis thaliana promoter binding element database that focuses on specific binding elements on known genes, found with experimental methods.

Proper citation: AtProbe (RRID:SCR_005412) Copy   


  • RRID:SCR_005529

    This resource has 1+ mentions.

http://www.phenologs.org/

Database for identifying orthologous phenotypes (phenologs). Mapping between genotype and phenotype is often non-obvious, complicating prediction of genes underlying specific phenotypes. This problem can be addressed through comparative analyses of phenotypes. We define phenologs based upon overlapping sets of orthologous genes associated with each phenotype. Comparisons of >189,000 human, mouse, yeast, and worm gene-phenotype associations reveal many significant phenologs, including novel non-obvious human disease models. For example, phenologs suggest a yeast model for mammalian angiogenesis defects and an invertebrate model for vertebrate neural tube birth defects. Phenologs thus create a rich framework for comparing mutational phenotypes, identify adaptive reuse of gene systems, and suggest new disease genes. To search for phenologs, go to the basic search page and enter a list of genes in the box provided, using Entrez gene identifiers for mouse/human genes, locus ids for yeast (e.g., YHR200W), or sequence names for worm (e.g., B0205.3). It is expected that this list of genes will all be associated with a particular system, trait, mutational phenotype, or disease. The search will return all identified model organism/human mutational phenotypes that show any overlap with the input set of the genes, ranked according to their hypergeometric probability scores. Clicking on a particular phenolog will result in a list of genes associated with the phenotype, from which potential new candidate genes can identified. Currently known phenotypes in the database are available from the link labeled ''Find phenotypes'', where the associated gene can be submitted as queries, or alternately, can be searched directly from the link provided.

Proper citation: Phenologs (RRID:SCR_005529) Copy   


http://www.knockoutmouse.org/

Database of the international consortium working together to mutate all protein-coding genes in the mouse using a combination of gene trapping and gene targeting in C57BL/6 mouse embryonic stem (ES) cells. Detailed information on targeted genes is available. The IKMC includes the following programs: * Knockout Mouse Project (KOMP) (USA) ** CSD, a collaborative team at the Children''''s Hospital Oakland Research Institute (CHORI), the Wellcome Trust Sanger Institute and the University of California at Davis School of Veterinary Medicine , led by Pieter deJong, Ph.D., CHORI, along with K. C. Kent Lloyd, D.V.M., Ph.D., UC Davis; and Allan Bradley, Ph.D. FRS, and William Skarnes, Ph.D., at the Wellcome Trust Sanger Institute. ** Regeneron, a team at the VelociGene division of Regeneron Pharmaceuticals, Inc., led by David Valenzuela, Ph.D. and George D. Yancopoulos, M.D., Ph.D. * European Conditional Mouse Mutagenesis Program (EUCOMM) (Europe) * North American Conditional Mouse Mutagenesis Project (NorCOMM) (Canada) * Texas A&M Institute for Genomic Medicine (TIGM) (USA) Products (vectors, mice, ES cell lines) may be ordered from the above programs.

Proper citation: International Knockout Mouse Consortium (RRID:SCR_005574) Copy   


  • RRID:SCR_005634

    This resource has 1+ mentions.

http://transpogene.tau.ac.il/

A publicly available database of Transposed elements (TEs) which are located within protein-coding genes of 7 organisms: human, mouse, chicken, zebrafish, fruilt fly, nematode and sea squirt. Using TranspoGene the user can learn about the many aspects of the effect these TEs have on their hosting genes, such as: exonization events (including alternative splicing-related data), insertion of TEs into introns, exons, and promoters, specific location of the TE over the gene, evolutionary divergence of the TE from its consensus sequence and involvement in diseases. TranspoGene database is quickly searchable through its website, enables many kinds of searches and is available for download. TranspoGene contains information regarding specific type and family of the TEs, genomic and mRNA location, sequence, supporting transcript accession and alignment to the TE consensus sequence. The database also contains host gene specific data: gene name, genomic location, Swiss-Prot and RefSeq accessions, diseases associated with the gene and splicing pattern. The TranspoGene and microTranspoGene databases can be used by researchers interested in the effect of TE insertion on the eukaryotic transcriptome.

Proper citation: TranspoGene (RRID:SCR_005634) Copy   


  • RRID:SCR_005620

    This resource has 100+ mentions.

http://www.gene-regulation.com/pub/databases.html#transfac

Manually curated database of eukaryotic transcription factors, their genomic binding sites and DNA binding profiles. Used to predict potential transcription factor binding sites.

Proper citation: TRANSFAC (RRID:SCR_005620) Copy   


http://www.dbs.ifi.lmu.de/~bundschu/LHGDN.html

A text mining derived database with focus on extracting and classifying gene-disease associations with respect to several biomolecular conditions. It uses a machine learning based algorithm to extract semantic gene-disease relations from a textual source of interest. The semantic gene-disease relations were extracted with F-measures of 78. More specifically, the textual source utilized here originates from Entrez Gene''''s GeneRIF (Gene Reference Into Function) database (Mitchell, et al., 2003). LHGDN was created based on a GeneRIF version from March 31st, 2009, consisting of 414241 phrases. These phrases were further restricted to the organism Homo sapiens, which resulted in a total of 178004 phrases. We benchmark our approach on two different tasks. The first task is the identification of semantic relations between diseases and treatments. The available data set consists of manually annotated PubMed abstracts. The second task is the identification of relations between genes and diseases from a set of concise phrases, so-called GeneRIF (Gene Reference Into Function) phrases. In our experimental setting, we do not assume that the entities are given, as is often the case in previous relation extraction work. Rather the extraction of the entities is solved as a subproblem. Compared with other state-of-the-art approaches, we achieve very competitive results on both data sets. To demonstrate the scalability of our solution, we apply our approach to the complete human GeneRIF database. The resulting gene-disease network contains 34758 semantic associations between 4939 genes and 1745 diseases. The gene-disease network is publicly available as a machine-readable RDF graph. We extend the framework of Conditional Random Fields towards the annotation of semantic relations from text and apply it to the biomedical domain. Our approach is based on a rich set of textual features and achieves a performance that is competitive to leading approaches. The model is quite general and can be extended to handle arbitrary biological entities and relation types. The resulting gene-disease network shows that the GeneRIF database provides a rich knowledge source for text mining.

Proper citation: Literature-derived human gene-disease network (RRID:SCR_005653) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X