Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://sncid.stanleyresearch.org/
A database of 1749 neuropathological markers measured in 12 different brain regions from 60 brains in the Consortium Collection from the Stanley Medical Research Institute combined with microarray data and statistical tools. Fifteen brains each are from patients diagnosed with schizophrenia, bipolar disorder, or major depression, and unaffected controls. The four groups are matched by age, sex, race, postmortem interval, pH, side of brain, and mRNA quality. A Repository of raw data is also included. Users must register for access.
Proper citation: Stanley Neuropathology Consortium Integrative Database (RRID:SCR_002749) Copy
http://noble.gs.washington.edu/proj/percolator/
Percolator post-processes the results of a shotgun proteomics database search program, re-ranking peptide-spectrum matches so that the top of the list is enriched for correct matches. Shotgun proteomics uses liquid chromatography-tandem mass spectrometry to identify proteins in complex biological samples. We describe an algorithm, called Percolator, for improving the rate of peptide identifications from a collection of tandem mass spectra. Percolator uses semi-supervised machine learning to discriminate between correct and decoy spectrum identifications, correctly assigning peptides to 17% more spectra from a tryptic dataset and up to 77% more spectra from non-tryptic digests, relative to a fully supervised approach. The yeast-01 data is available in tab delimetered format. The SEQUEST parameter file and target database for the yeast and worm data are also available.
Proper citation: Percolator: Semi-supervised learning for peptide identification from shotgun proteomics datasets (RRID:SCR_005040) Copy
Portal touching on all aspects of neuroscience from molecules to the mind, from the laboratory bench to the patient's bedside. Members study the normal structure and workings of the nervous system, its development, its cognitive functions, its derangement by disease and injury, and the means of its repair and protection. Projects span traditional disciplinary boundaries, as do graduate and postdoctoral training programs. Its major achievement has been to foster and improve multidisciplinary collaborations which has increasingly permitted the identification of pathogenic mechanisms and the formulation of new therapeutic approaches.
Proper citation: Brain Research Institute (RRID:SCR_004988) Copy
http://health.usf.edu/byrd/adrc/index.htm
A statewide consortium dedicated to Alzheimer's disease research to better understand the disease and related memory disorders. It includes Alzheimer's researchers and clinicians from institutions across Florida such as USF Health, Mayo Clinic Jacksonville, and Mount Sinai Medical Center. The purpose of the ADRC is to assist institutions in developing an infrastructure (cores) that can be used for various research projects with the goal of better understanding Alzheimer's disease and related disorders. The Florida ADRC is comprised of six cores, three projects and three pilot projects among other collaborations that utilize these cores.
Proper citation: Florida Alzheimer's Disease Research Center (RRID:SCR_004940) Copy
http://cran.r-project.org/web/packages/MBCluster.Seq/index.html
Software to cluster genes based on Poisson or Negative-Binomial model for RNA-Seq or other digital gene expression (DGE) data.
Proper citation: MBCluster.Seq (RRID:SCR_005079) Copy
Public research university with its main campus in Lawrence, Kansas, and several satellite campuses, research and educational centers, medical centers, and classes across the state of Kansas.
Proper citation: University of Kansas; Kansas; USA (RRID:SCR_005075) Copy
http://www.biomedcentral.com/1471-2105/13/189
An algorithm to use optical map information directly within the de Bruijn graph framework to help produce an accurate assembly of a genome that is consistent with the optical map information provided. AGORA takes as input two data structures: OpMap ? an ordered list of fragment sizes representing the optical map; and Edges ? a list of de Bruijn graph edges with their corresponding sequences.
Proper citation: AGORA (RRID:SCR_005070) Copy
https://github.com/AlexeyG/GRASS
A generic algorithm for scaffolding next-generation sequencing assemblies.
Proper citation: GRASS (RRID:SCR_005071) Copy
http://www.protocol-online.org/
Database of research protocols in a variety of life science fields, it contains protocols contributed by worldwide researchers as well as links to web protocols hosted by worldwide research labs, biotech companies, personal web sites. The data is stored in a MySql relational database. Protocol Online also hosts discipline specific discussion forums (BioForum), and provides a free PubMed search and alerting service (PubAlert).
Proper citation: Protocol Online - Your labs reference book (RRID:SCR_004937) Copy
http://www.bioinf.boku.ac.at/pub/MapAl/
A software tool for RNA-Seq expression profiling that builds on the established programs Bowtie and Cufflinks. Allowing an incorporation of ''gene models'' already at the alignment stage almost doubles the number of transcripts that can be measured reliably.
Proper citation: MapAl (RRID:SCR_004938) Copy
Public research university and the largest university in the UK for undergraduate education. The majority of the OU's undergraduate students are based in the United Kingdom and principally study off-campus; many of its courses can also be studied anywhere in the world.
Proper citation: Open University; Milton Keynes; United Kingdom (RRID:SCR_004931) Copy
http://www.arb-silva.de/aligner/
Service to align and optionally taxonomically classify your rRNA gene sequences. The results can be combined with any other sequences aligned by SINA or taken from the SILVA databases by concatenation of FASTA files or using the ARB MERGE tool. Note: Submission is currently limited to at most 1000 sequences of at most 6000 bases each. If your requirements exceed this limitation, get Opens internal link in current windowSINA for local installation.
Proper citation: SINA (RRID:SCR_005067) Copy
http://sourceforge.net/apps/mediawiki/amos/index.php?title=Bambus2
Software for scaffolding to address some of the challenges encountered when analyzing metagenomes. Scaffolding represents the task of ordering and orienting contigs by incorporating additional information about their relative placement along the genome. While most other scaffolders are closely tied to a specific assembly program, Bambus accepts the output from most current assemblers and provides the user with great flexibility in choosing the scaffolding parameters. In particular, Bambus is able to accept contig linking data other than specified by mate-pairs. Such sources of information include alignment to a reference genome (Bambus can directly use the output of MUMmer), physical mapping data, or information about gene synteny.
Proper citation: Bambus (RRID:SCR_005068) Copy
Neuron Navigator (NNG) integrates a 3D neuron image database into an easy-to-use visual interface. Via a flexible and user-friendly interface, NNG is designed to help researchers analyze and observe the connectivity within the neural maze and discover possible pathways. With NNG''s 3D neuron image database, researchers can perform volumetric searches using the location of neural terminals, or the occupation of neuron volumes within the 3D brain space. Also, the presence of the neurons under a combination of spatial restrictions can be shown as well. NNG is a result of a multi-discipline collaboration between neuroscientists and computer scientists, and NNG has now been implemented on a coordinated brain space for the Drosophila (fruit fly) brain. Account is required.
Proper citation: Neuron Navigator (RRID:SCR_005063) Copy
http://www.medicine.uiowa.edu/
Medical school of the University of Iowa, located in Iowa City, in the U.S. state of Iowa.
Proper citation: University of Iowa Carver College of Medicine; Iowa; USA (RRID:SCR_005064) Copy
http://www.comp.hkbu.edu.hk/~chxw/software/G-BLASTN.html
A GPU-accelerated nucleotide alignment tool based on the widely used NCBI-BLAST. It can produce exactly the same results as NCBI-BLAST, and it also has very similar user commands. It also supports a pipeline mode, which can fully utilize the GPU and CPU resources when handling a batch of medium to large sized queries.
Proper citation: G-BLASTN (RRID:SCR_005062) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 2nd, 2023. Sequence composition based classifier for metagenomic sequences. It works by capturing signatures of each sequence based on the sequence composition. Each sequence is modeled as a walk in a de Bruijn graph with underlying Markov chain properties. ClaMS captures stationary parameters of the underlying Markov chain as well as structural parameters of the underlying de Bruijn graph to form this signature. In practice, for each sequence to binned, such a signature is computed and matched to similar signatures computed for the training sets. The best match that also qualifies the normalized distance cut-off wins. In the case that the best match does not qualify this cut-off, the sequence remains un-binned.
Proper citation: Classifier for Metagenomic Sequences (RRID:SCR_004929) Copy
Independent, nonprofit research institute conducting client sponsored research and development for government agencies, commercial businesses, foundations, and other organizations. SRI also brings its innovations to the marketplace by licensing its intellectual property and creating new ventures. SRI was founded as Stanford Research Institute in 1946 by a group of West Coast industrialists and Stanford University. SRI formally separated from the University in 1970, and we changed our name to SRI International in 1977.
Proper citation: Stanford Research Institute International (RRID:SCR_004926) Copy
Collaboration environment for sharing variable sets and statistical methods for analysis across social science survey data. MethodBox enables you to browse and download datasets, share methods and scripts, find fellow researchers with similar interests and share your knowledge. MethodBox source available on Google code. Finding the variables you need to support a particular research question can be time consuming. Wading through hundreds of pages of PDF documents, codebooks and metadata and then trying to find the exact column in a huge spreadsheet can be very frustrating. MethodBox gets you to the variables faster and lets you download only the data you need. You can also share your scripts with others to allow them to adopt best practice quicker than before.
Proper citation: MethodBox (RRID:SCR_004928) Copy
https://sites.google.com/site/jingyijli/SLIDE.zip
Software package that takes exon boundaries and RNA-Seq data as input to discern the set of mRNA isoforms that are most likely to present in an RNA-Seq sample. It is based on a linear model with a design matrix that models the sampling probability of RNA-Seq reads from different mRNA isoforms. To tackle the model unidentifiability issue, SLIDE uses a modified Lasso procedure for parameter estimation. Compared with deterministic isoform assembly algorithms (e.g., Cufflinks), SLIDE considers the stochastic aspects of RNA-Seq reads in exons from different isoforms and thus has increased power in detecting more novel isoforms. Another advantage of SLIDE is its flexibility of incorporating other transcriptomic data such as RACE, CAGE, and EST into its model to further increase isoform discovery accuracy. SLIDE can also work downstream of other RNA-Seq assembly algorithms to integrate newly discovered genes and exons. Besides isoform discovery, SLIDE sequentially uses the same linear model to estimate the abundance of discovered isoforms.
Proper citation: SLIDE (RRID:SCR_005137) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.