Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 43 showing 841 ~ 860 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection

http://www.mousephenotype.org/

Center that produces knockout mice and carries out high-throughput phenotyping of each line in order to determine function of every gene in mouse genome. These mice will be preserved in repositories and made available to scientific community representing valuable resource for basic scientific research as well as generating new models for human diseases.

Proper citation: International Mouse Phenotyping Consortium (IMPC) (RRID:SCR_006158) Copy   


  • RRID:SCR_006038

    This resource has 1+ mentions.

http://www.procap.ki.se/procap_studie_info.htm

PROCAP is a study of the importance of lifestyle and genetic factors in the progression of localized cancer of the prostate. Our study hypothesis is that the likelihood of disease recurrence of prostate cancer is modified or determined by genetic variation in the human genome and/or lifestyle factors. To be able to test our hypothesis, we are using a large, population-based cohort of men with localized prostate cancer in Sweden, recruited in 1997-2002, from which detailed clinical information and data on progression already have been collected. From this cohort, we are collecting lifestyle data and blood samples from 8,500 men. If men with progressive prostate cancer could be identified on their genetic make-up, they could be given additional therapies targeted specifically at prostate cancer progression or monitored even more frequently so that progressions could be treated even earlier. If lifestyle factors are important, these results have an impact on recommendations given to men with newly diagnosed prostate cancer. In the study, we are asking the study persons to fill in an Internet-based questionnaire focusing on diet and physical activity and we ask them to leave 2 test tubes of blood at their local urologist/health care center. The pilot study has recently been completed and evaluated and the remaining 7,500 men in the cohort will be included during 2007 and 2008. So far, we have a response rate of approximately 85% on the blood samples. The response rate for the questionnaire is approximately 80% (both in the web based and paper based versions combined). Genotyping and analysis will begin in the fall of 2008. Sample types: * EDTA whole blood * Plasma * DNA Number of sample donors: 5492 (sample collection completed)

Proper citation: KI Biobank - PROCAP (RRID:SCR_006038) Copy   


  • RRID:SCR_006034

    This resource has 1+ mentions.

http://ki.se/imm/cefalo-studien

Saliva taken from participants in a study investigating the association between environmental exposures and brain tumors in children aged 7-19 years and the interaction between these risk factors and genetic polymorphisms, which may confer susceptibility to effects of exogenous agents. Sample types: * Saliva Number of sample donors: 886 (sample collection completed)

Proper citation: KI Biobank - CEFALO (RRID:SCR_006034) Copy   


  • RRID:SCR_013442

http://wpicr.wpic.pitt.edu/WPICCompGen/fdr/

Software application (entry from Genetic Analysis Software)

Proper citation: WEIGHTED FDR (RRID:SCR_013442) Copy   


  • RRID:SCR_013279

    This resource has 1+ mentions.

http://www.tcd.ie/IMM/trinity-biobank/index.php

The Trinity Biobank was established in 2005 to serve the needs of researchers in the area of genetic epidemiology, population genetics and pharmacogenomics. Its services are available to researchers not only in Trinity College but to other institutions at home and abroad. We provide an automated DNA extraction service purifying large volumes blood (up to 10mL whole blood) and tissue DNA for archival and other purposes. In addition it makes available purified DNA and associated GWAS data from 2000 healthy donors for research use. A key requirement for reliable downstream use of DNA is purity and strand size. The quality of DNA in blood and tissue deteriorates upon storage without purification even at -80 degrees C. We ensure rapid turnaround of biological samples through automated extraction using the Qiagen Autopure system based on optimized ''salting out'' chemistry. The purified DNA sample may then be stored safely at -20 degrees C without deterioration thus freeing up valuable -80 degree C freezer space and the associated capital and maintenance cost as well as security and lab space provision. Automated DNA extraction is particularly suitable for high-throughput sample processing called for in epidemiological studies or simply for clearing sample inventory backlogs. The Trinity Biobank distributes control DNA to researchers as part of its remit to enhance the level of research activity and to synergize molecular medicine research nationally and internationally. The buffy coat collection has been made possible with the cooperation of the Irish Blood Transfusion Service (IBTS). An important requirement to access the collection is that the use of the samples relates only to ethically-approved research and to specifically-nominated research projects. The DNA collection consists of high quality human genomic DNA. Each of the available 2,000 samples is from a single individual and each sample comes with the age and gender data of the donor. The buffy coat sample is derived from the total white cell compliment (50mL buffy coat) of a blood donation (c 400mL). We will endeavor to fulfill samples number requests based on age and gender as best as possible. This collection has also been genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0, featuring 1.8 million genetic markers, including more than 906,600 single nucleotide polymorphisms (SNPs) and more than 946,000 probes for the detection of copy number variation (CNV). The DNA comes available as a 100ng/uL in 100uL of TE Buffer, ie in 10ug amounts in a separate screw-cap ampoule. The ampoules are shipped in 100-tube boxes (Sarstedt). Corresponding plasma (ACD) is also available on request. Genotype data is supplied in PLINK binary PED files format (http://pngu.mgh.harvard.edu/~purcell/plink/ ).

Proper citation: Trinity Biobank (RRID:SCR_013279) Copy   


  • RRID:SCR_010524

    This resource has 10+ mentions.

https://www.lifegene.se/In-english/

Swedish study to get a better understanding of how genes, environment and way of life affect health that will enable access to the longitudinal data on 500,000 participants after ethical approval. Half a million people in Sweden between the ages of 0 and 45 will be recruited as volunteers for 6 to 8 years. People between 18 and 45 will be invited and they may, in turn, bring children and other people that they live with into the project. Participants will be followed for many years with regular online surveys and health checks. Their blood and urine samples will also be stored in a biobank. All the data will form a very large information base, where researchers can follow what happens with people''''s health. The LifeGene test center will measure height, hip, waist and chest measurements. A so-called spirometry test will be conducted which measures lung function, a hearing test and bioimpedance measurement (includes weight, BMI and distribution of body fat and muscle mass). They also take blood and urine samples and measure blood pressure and pulse. LifeGene foresees a lot of different research cooperation. Everything from simple withdrawal of longitudinal data, leverage of LifeGene infrastructure and cooperation between LifeGene and complementing scientific projects covering specific areas in more depth. LifeGene will enable access to unique longitudinal data on 500,000 participants available for researchers after ethical approval. LifeGene is also an infrastructure with Test Centers covering most of Sweden, logistics for sample management from arm-to-freezer and state-of-the-art large scale automatic biobanking enabling low cost, high quality, fast withdrawal of biological samples.

Proper citation: LifeGene (RRID:SCR_010524) Copy   


http://www.eurobiobank.org/en/partners/description/inncb_copy.htm#organisation

A biobank of human biological material and genetic information. It provides samples and information to researchers in order to identify new genes and clarify pathogenic mechanisms of diseases. The biobank offers biochemical and molecular diagnoses of genetic dystonias, Parkinson's disease and NBIA disorders, as well as storage of biological samples for external institutions.

Proper citation: Movement Disorders Biobank (RRID:SCR_010659) Copy   


  • RRID:SCR_013132

    This resource has 1+ mentions.

http://mayoresearch.mayo.edu/mayo/research/schaid_lab/software.cfm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 24,2023. Software application to compute composite measures of linkage disequilibrium, their variances and covariances, and statistical tests, for all pairs of alleles from two loci when linkage phase is unkown. An extension of Weir and Cockerham (1989) to apply to multi-allelic loci. (entry from Genetic Analysis Software)

Proper citation: COMPOSITELD (RRID:SCR_013132) Copy   


http://www.fruitfly.org

Database on the sequence of the euchromatic genome of Drosophila melanogaster In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community. Resources * Universal Proteomics Resource: Search for clones for expression and tissue culture * Materials: Request genomic or cDNA clones, library filters or fly stocks * Download Sequence data sets and annotations in fasta or xml format by http or ftp * Publications: Browse or download BDGP papers * Methods: BDGP laboratory protocols and vector maps * Analysis Tools: Search sequences for CRMs, promoters, splice sites, and gene predictions * Apollo: Genome annotation viewer and editor September 15, 2009 Illumina RNA-Seq data from 30 developmental time points of D. melanogaster has been submitted to the Short Read Archive at NCBI as part of the modENCODE project. The data set currently contains 2.2 billion single-end and paired reads and over 201 billion base pairs.

Proper citation: Berkeley Drosophila Genome Project (RRID:SCR_013094) Copy   


http://montana.eagle-i.net/i/0000012b-00be-4e65-df3b-3fdc80000000

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 27, 2023. Core for Microarray analysis, Database development, Systems biology analysis, Genome assembly, Pathway data analysis, Expression data analysis, Metagenomics analysis. To maintain equipment and software for bioinformatic research, promote bioinformatics education on the MSU campus, and provide training and support to biologists implementing bioinformatics tools in their research.

Proper citation: Montana State University Bioinformatics Core Facility (RRID:SCR_009937) Copy   


http://www.scienceexchange.com/facilities/university-of-utah

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 15,2024. Labs and facilities of the University of Utah, which include: Microarray and Genomic Analysis Core Facility, Flow Cytometry Core Facility, Mutation Generation and Detection Facility, and the Transgenic and Gene Targeting Core.

Proper citation: University of Utah Labs and Facilities (RRID:SCR_001042) Copy   


http://www.sci.unisannio.it/docenti/rampone/

Data set of Homo Sapiens Exons, Introns and Splice regions extracted from GenBank Rel.123 with an aim of giving standardized material to train and to assess the prediction accuracy of computational approaches for gene identification and characterization. From the complete GenBank (Primate Sequences Division) Rel.123 (162,557 entries), entries of Human Nuclear DNA including Complete CDS and more than one Exon have been selected, and 4523 exons and 3802 introns have been extracted from these entries. Details about extracted exons and introns are reported (Locus, number, Start and End position in the entry, sequence, length, G+C content, presence of not AGCT data (nucleotide scan check)). Statistics are also reported (overall nucleotides, average G+C content, nucleotide scan check results, number of not GT starting / AG ending introns, minimum / maximum / average length, length standard deviation). 3799+3799 donor and acceptor sites, as windows of 140 nucleotides around each splice site have been extracted. After discarding sequences not including canonical GTAG junctions (65+74), including insufficient data (not enough material for a 140 nucleotide window) (686+589), including not AGCT bases (29+30), and redundant (218+226) there are 2796+ 2880 windows. Finally, there are 271,937 + 332,296 windows of false splice sites, selected by searching canonical GTAG pairs in not splicing positions. The false sites in a range of +/- 60 from a true splice site are marked as proximal.

Proper citation: HS3D - Homo Sapiens Splice Sites Dataset (RRID:SCR_002939) Copy   


http://qnl.bu.edu/SLDB

Curated lists of genes associated to speech / language phenotypes and structural or functional abnormalities observed in patient populations. Entrez ID gene information, as well as gene expression profiles from the Allen Brain Atlas are available. You can also download expression data for a given gene in JSON or XML format.

Proper citation: Speech Language Disorders Database (RRID:SCR_003655) Copy   


  • RRID:SCR_001581

    This resource has 1+ mentions.

http://archive.ics.uci.edu/ml/datasets/EEG+Database

Data set from a large study to examine EEG correlates of genetic predisposition to alcoholism. It contains measurements from 64 electrodes placed on the scalp sampled at 256 Hz (3.9-msec epoch) for 1 second. There were two groups of subjects: alcoholic and control. Each subject was exposed to either a single stimulus (S1) or to two stimuli (S1 and S2) which were pictures of objects chosen from the 1980 Snodgrass and Vanderwart picture set. When two stimuli were shown, they were presented in either a matched condition where S1 was identical to S2 or in a non-matched condition where S1 differed from S2. There were 122 subjects and each subject completed 120 trials where different stimuli were shown. The electrode positions were located at standard sites (Standard Electrode Position Nomenclature, American Electroencephalographic Association 1990). Zhang et al. (1995) describes in detail the data collection process. There are three versions of the EEG data set. * The Small Data Set (smni97_eeg_data.tar.gz) contains data for the 2 subjects, alcoholic a_co2a0000364 and control c_co2c0000337. For each of the 3 matching paradigms, c_1 (one presentation only), c_m (match to previous presentation) and c_n (no-match to previous presentation), 10 runs are shown. * The Large Data Set (SMNI_CMI_TRAIN.tar.gz and SMNI_CMI_TEST.tar.gz) contains data for 10 alcoholic and 10 control subjects, with 10 runs per subject per paradigm. The test data used the same 10 alcoholic and 10 control subjects as with the training data, but with 10 out-of-sample runs per subject per paradigm. * The Full Data Set contains all 120 trials for 122 subjects. The entire set of data is about 700 MBytes.

Proper citation: EEG Database (RRID:SCR_001581) Copy   


  • RRID:SCR_002426

    This resource has 10+ mentions.

http://www.ebi.ac.uk/genomes

The EBI genomes pages give access to a large number of complete genomes including bacteria, archaea, viruses, phages, plasmids, viroids and eukaryotes. Methods using whole genome shotgun data are used to gain a large amount of genome coverage for an organism. WGS data for a growing number of organisms are being submitted to DDBJ/EMBL/GenBank. Genome entries have been listed in their appropriate category which may be browsed using the website navigation tool bar on the left. While organelles are all listed in a separate category, any from Eukaryota with chromosome entries are also listed in the Eukaryota page. Within each page, entries are grouped and sorted at the species level with links to the taxonomy page for that species separating each group. Within each species, entries whose source organism has been categorized further are grouped and numbered accordingly. Links are made to: * taxonomy * complete EMBL flatfile * CON files * lists of CON segments * Project * Proteomes pages * FASTA file of Proteins * list of Proteins

Proper citation: EBI Genomes (RRID:SCR_002426) Copy   


  • RRID:SCR_003658

http://www.linked-neuron-data.org/

Neuroscience data and knowledge from multiple scales and multiple data sources that has been extracted, linked, and organized to support comprehensive understanding of the brain. The core is the CAS Brain Knowledge base, a very large scale brain knowledge base based on automatic knowledge extraction and integration from various data and knowledge sources. The LND platform provides services for neuron data and knowledge extraction, representation, integration, visualization, semantic search and reasoning over the linked neuron data. Currently, LND extracts and integrates semantic data and knowledge from the following resources: PubMed, INCF-CUMBO, Allen Reference Atlas, NIF, NeuroLex, MeSH, DBPedia/Wikipedia, etc.

Proper citation: Linked Neuron Data (RRID:SCR_003658) Copy   


  • RRID:SCR_002469

    This resource has 10+ mentions.

http://bpg.utoledo.edu/~afedorov/lab/eid.html

Data sets of protein-coding intron-containing genes that contain gene information from humans, mice, rats, and other eukaryotes, as well as genes from species whose genomes have not been completely sequenced. This is a comprehensive and convenient dataset of sequences for computational biologists who study exon-intron gene structures and pre-mRNA splicing. The database is derived from GenBank release 112, and it contains protein-coding genes that harbor introns, along with extensive descriptions of each gene and its DNA and protein sequences, as well as splice motif information. They have created subdatabases of genes whose intron positions have been experimentally determined. The collection also contains data on untranslated regions of gene sequences and intron-less genes. For species with entirely sequenced genomes, species-specific databases have been generated. A novel Mammalian Orthologous Intron Database (MOID) has been introduced which includes the full set of introns that come from orthologous genes that have the same positions relative to the reading frames.

Proper citation: EID: Exon-Intron Database (RRID:SCR_002469) Copy   


  • RRID:SCR_008801

    This resource has 5000+ mentions.

http://aws.amazon.com/1000genomes/

A dataset containing the full genomic sequence of 1,700 individuals, freely available for research use. The 1000 Genomes Project is an international research effort coordinated by a consortium of 75 companies and organizations to establish the most detailed catalogue of human genetic variation. The project has grown to 200 terabytes of genomic data including DNA sequenced from more than 1,700 individuals that researchers can now access on AWS for use in disease research free of charge. The dataset containing the full genomic sequence of 1,700 individuals is now available to all via Amazon S3. The data can be found at: http://s3.amazonaws.com/1000genomes The 1000 Genomes Project aims to include the genomes of more than 2,662 individuals from 26 populations around the world, and the NIH will continue to add the remaining genome samples to the data collection this year. Public Data Sets on AWS provide a centralized repository of public data hosted on Amazon Simple Storage Service (Amazon S3). The data can be seamlessly accessed from AWS services such Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic MapReduce (Amazon EMR), which provide organizations with the highly scalable compute resources needed to take advantage of these large data collections. AWS is storing the public data sets at no charge to the community. Researchers pay only for the additional AWS resources they need for further processing or analysis of the data. All 200 TB of the latest 1000 Genomes Project data is available in a publicly available Amazon S3 bucket. You can access the data via simple HTTP requests, or take advantage of the AWS SDKs in languages such as Ruby, Java, Python, .NET and PHP. Researchers can use the Amazon EC2 utility computing service to dive into this data without the usual capital investment required to work with data at this scale. AWS also provides a number of orchestration and automation services to help teams make their research available to others to remix and reuse. Making the data available via a bucket in Amazon S3 also means that customers can crunch the information using Hadoop via Amazon Elastic MapReduce, and take advantage of the growing collection of tools for running bioinformatics job flows, such as CloudBurst and Crossbow.

Proper citation: 1000 Genomes Project and AWS (RRID:SCR_008801) Copy   


http://www.sgn.cornell.edu/bulk/input.pl?modeunigene

Allows users to download Unigene or BAC information using a list of identifiers or complete datasets with FTP., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Sol Genomics Network - Bulk download (RRID:SCR_007161) Copy   


https://www.ngvbcc.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. Archiving services, insertional site analysis, pharmacology and toxicology resources, and reagent repository for academic investigators and others conducting gene therapy research. Databases and educational resources are open to everyone. Other services are limited to gene therapy investigators working in academic or other non-profit organizations. Stores reserve or back-up clinical grade vector and master cell banks. Maintains samples from any gene therapy related Pharmacology or Toxicology study that has been submitted to FDA by U.S. academic investigator that require storage under Good Laboratory Practices. For certain gene therapy clinical trials, FDA has required post-trial monitoring of patients, evaluating clinical samples for evidence of clonal expansion of cells. To help academic investigators comply with this FDA recommendation, the NGVB offers assistance with clonal analysis using LAM-PCR and LM-PCR technology.

Proper citation: National Gene Vector Biorepository (RRID:SCR_004760) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X