Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 41 showing 801 ~ 820 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_001204

http://ccb.jhu.edu/software/sim4cc/

Software tool as cross species spliced alignment program.Heuristic sequence alignment tool for comparing cDNA sequence with genomic sequence containing homolog of gene in another species.

Proper citation: sim4cc (RRID:SCR_001204) Copy   


http://www.omixon.com/data-analysis-and-pro/

Software application suite to help clinical labs adopt next generation sequencing for the analysis of diagnostic gene targets.

Proper citation: Omixon Target Data Analysis (RRID:SCR_001207) Copy   


http://www.genome.jp/kegg/expression/

Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.

Proper citation: Kyoto Encyclopedia of Genes and Genomes Expression Database (RRID:SCR_001120) Copy   


  • RRID:SCR_001480

    This resource has 10+ mentions.

http://globin.cse.psu.edu/

Data and tools for studying the function of DNA sequences, with an emphasis on those involved in the production of hemoglobin. It includes information about naturally-occurring human hemoglobin mutations and their effects, experimental data related to the regulation of the beta-like globin gene cluster, and software tools for comparing sequences with one another to discover regions that are likely to play significant roles.

Proper citation: Globin Gene Server (RRID:SCR_001480) Copy   


  • RRID:SCR_001395

    This resource has 10+ mentions.

http://www.well.ox.ac.uk/happy/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package for Multipoint QTL Mapping in Genetically Heterogeneous Animals (entry from Genetic Analysis Software) The method is implemented in a C-program and there is now an R version of HAPPY. You can run HAPPY remotely from their web server using your own data (or try it out on the data provided for download).

Proper citation: Happy (RRID:SCR_001395) Copy   


https://factory.euromov.eu/sml/index.php

Open source Java library dedicated to semantic measures computation and analysis. Tools based on the SML are also provided through the SML-Toolkit, a command line software giving access to some of the functionalities of the library. The SML and the toolkit can be used to compute semantic similarity and semantic relatedness between semantic elements (e.g. concepts, terms) or entities semantically characterized (e.g. entities defined in a semantic graph, documents annotated by concepts defined in an ontology).

Proper citation: Semantic Measures Library (RRID:SCR_001383) Copy   


  • RRID:SCR_001725

    This resource has 10+ mentions.

http://django.nubic.northwestern.edu/fundo/

Tool that takes a list of genes and finds relevant diseases based on statistical analysis of the Disease Ontology annotation database. It accepts Entrez gene ids or gene symbols, separated by tabs, newlines, or commas. This list of genes can be obtained by microarray, proteomics, sequencing or other high-throughput screening methods.

Proper citation: FunDO (RRID:SCR_001725) Copy   


  • RRID:SCR_001714

    This resource has 100+ mentions.

http://www.homozygositymapper.org/

A web-based approach of homozygosity mapping that can handle tens of thousands markers. User can upload their own SNP genotype files to the database. Intuitive graphic interface is provided to view the homozygous stretches, with the ability of zooming into single chromosomes or user-defined chromosome regions. The underlying genotypes in all samples are displayed. The software is also integrated with our candidate gene search engine, GeneDistiller, so that users can interactively determine the most promising gene. (entry from Genetic Analysis Software)

Proper citation: HOMOZYGOSITYMAPPER (RRID:SCR_001714) Copy   


  • RRID:SCR_001621

    This resource has 1000+ mentions.

https://www.hgmd.cf.ac.uk/ac/introduction.php?lang=english

Curated database of known (published) gene lesions responsible for human inherited disease.

Proper citation: Human Gene Mutation Database (RRID:SCR_001621) Copy   


  • RRID:SCR_002273

    This resource has 1+ mentions.

http://weatherby.genetics.utah.edu/cgi-bin/Phevor/PhevorWeb.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on October 28,2025. Tool that integrates phenotype, gene function, and disease information with personal genomic data for improved power to identify disease-causing alleles. It works by combining knowledge resident in multiple biomedical ontologies with the outputs of variant prioritization tools. It does so using an algorithm that propagates information across and between ontologies. This process enables Phevor to accurately reprioritize potentially damaging alleles identified by variant prioritization tools in light of gene function, disease, and phenotype knowledge. Phevor is especially useful for single exome and family trio-based diagnostic analyses, the most commonly occurring clinical scenarios, and ones for which existing personal-genomes diagnostic tools are most inaccurate and underpowered. Phevor not only improves diagnostic accuracy for individuals presenting with established disease phenotypes, but also for those with previously undescribed and atypical disease presentations. Importantly, Phevor is not limited to known diseases, or known disease-causing alleles.

Proper citation: Phevor (RRID:SCR_002273) Copy   


  • RRID:SCR_001979

    This resource has 1+ mentions.

http://eyegene.ophthy.med.umich.edu/madeline/

Software tool designed for preparing, visualizing, and exploring human pedigree data used in genetic linkage studies. It converts pedigree and marker data into formats required by popular linkage analysis packages, provides powerful ways to query pedigree data sets, and produces Postscript pedigree drawings that are useful for rapid data review.

Proper citation: MADELINE (RRID:SCR_001979) Copy   


  • RRID:SCR_000797

    This resource has 1+ mentions.

http://umcecaruca01.extern.umcn.nl:8080/ecaruca/ecaruca.jsp

A database of cytogenetic and clinical information on rare chromosomal disorders, including microdeletions and microduplications. The database is meant to be easily accessible for all participants, to improve patient care and collaboration between genetic centers, and collect the results of research and clinical features. The acronym ECARUCA stands for "European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations".

Proper citation: ECARUCA Project (RRID:SCR_000797) Copy   


  • RRID:SCR_001243

    This resource has 50+ mentions.

http://igenbio.com/

A web-based genome analysis platform that integrates proprietary functional genomic data, metabolic reconstructions, expression profiling, and biochemical and microbiological data with publicly available information. Focused on microbial genomics, it provides better and faster identification of gene function across all organisms. Building upon a comprehensive genomic database integrated with a collection of microbial metabolic and non-metabolic pathways and using proprietary algorithms, it assigns functions to genes, integrates genes into pathways, and identifies previously unknown or mischaracterized genes, cryptic pathways and gene products. . * Automated and manual annotation of genes and genomes * Analysis of metabolic and non-metabolic pathways to understand organism physiology * Comparison of multiple genomes to identify shared and unique features and SNPs * Functional analysis of gene expression microarray data * Data-mining for target gene discovery * In silico metabolic engineering and strain improvement

Proper citation: ERGO (RRID:SCR_001243) Copy   


  • RRID:SCR_004173

    This resource has 10+ mentions.

http://www.inmex.ca./INMEX/

A web-based tool to support meta-analysis of multiple gene-expression data sets, as well as to enable integration of data sets from gene expression and metabolomics experiments. INMEX contains three functional modules. The data preparation module supports flexible data processing, annotation and visualization of individual data sets. The statistical analysis module allows researchers to combine multiple data sets based on P-values, effect sizes, rank orders and other features. The significant genes can be examined in functional analysis module for enriched Gene Ontology terms or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, or expression profile visualization. INMEX has built-in support for common gene/metabolite identifiers (IDs), as well as 45 popular microarray platforms for human, mouse and rat. Complex operations are performed through a user-friendly web interface in a step-by-step manner.

Proper citation: INMEX (RRID:SCR_004173) Copy   


  • RRID:SCR_003552

    This resource has 1+ mentions.

http://biomine.cs.helsinki.fi/

Service that integrates cross-references from several biological databases into a graph model with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations. Edges are weighted based on their type, reliability, and informativeness. In particular, it formulates protein interaction prediction and disease gene prioritization tasks as instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph.

Proper citation: Biomine (RRID:SCR_003552) Copy   


  • RRID:SCR_003554

    This resource has 1+ mentions.

http://kt.ijs.si/software/SEGS/

A web tool for descriptive analysis of microarray data. The analysis is performed by looking for descriptions of gene sets that are statistically significantly over- or under-expressed between different scenarios within the context of a genome-scale experiments (DNA microarray). Descriptions are defined by using the terms from the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene-gene interactions found in the ENTREZ database. Gene annotations by GO and KEGG terms can also be found in the ENTREZ database. The tool provides three procedures for testing the enrichment of the gene sets (over- or under-expressed): Fisher's exact test, GSEA and PAGE, and option for combining the results of the tests. Because of the multiple-hypothesis testing nature of the problem, all the p-values are computed using the permutation testing method.

Proper citation: SEGS (RRID:SCR_003554) Copy   


  • RRID:SCR_003452

    This resource has 10+ mentions.

http://www.t-profiler.org

One of the key challenges in the analysis of gene expression data is how to relate the expression level of individual genes to the underlying transcriptional programs and cellular state. The T-profiler tool hosted on this website uses the t-test to score changes in the average activity of pre-defined groups of genes. The gene groups are defined based on Gene Ontology categorization, ChIP-chip experiments, upstream matches to a consensus transcription factor binding motif, and location on the same chromosome, respectively. If desired, an iterative procedure can be used to select a single, optimal representative from sets of overlapping gene groups. A jack-knife procedure is used to make calculations more robust against outliers. T-profiler makes it possible to interpret microarray data in a way that is both intuitive and statistically rigorous, without the need to combine experiments or choose parameters. Currently, gene expression data from Saccharomyces cerevisiae and Candida albicans are supported. Users can submit their microarray data for analysis by clicking on one of the two organism-specific tabs above. Platform: Online tool

Proper citation: T-profiler (RRID:SCR_003452) Copy   


  • RRID:SCR_002884

    This resource has 1+ mentions.

http://www.gensat.org/retina.jsp

Collection of images from cell type-specific protein expression in retina using BAC transgenic mice. Images from cell type-specific protein expression in retina using BAC transgenic mice from GENSAT project.

Proper citation: Retina Project (RRID:SCR_002884) Copy   


  • RRID:SCR_003058

    This resource has 10+ mentions.

http://dire.dcode.org

Web server based on the Enhancer Identification (EI) method, to determine the chromosomal location and functional characteristics of distant regulatory elements (REs) in higher eukaryotic genomes. The server uses gene co-expression data, comparative genomics, and combinatorics of transcription factor binding sites (TFBSs) to find TFBS-association signatures that can be used for discriminating specific regulatory functions. DiRE's unique feature is the detection of REs outside of proximal promoter regions, as it takes advantage of the full gene locus to conduct the search. DiRE can predict common REs for any set of input genes for which the user has prior knowledge of co-expression, co-function, or other biologically meaningful grouping. The server predicts function-specific REs consisting of clusters of specifically-associated TFBSs, and it also scores the association of individual TFs with the biological function shared by the group of input genes. Its integration with the Array2BIO server allows users to start their analysis with raw microarray expression data.

Proper citation: Distant Regulatory Elements (RRID:SCR_003058) Copy   


http://hgc.rockefeller.edu/

An interactive web server that enables researchers to prioritize any list of genes by their biological proximity to defined core genes (i.e. genes that are known to be associated with the phenotype), and to predict novel gene pathways.

Proper citation: Human Gene Connectome Server (RRID:SCR_002627) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X