Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://bioconductor.org/packages/release/bioc/html/oligo.html
Software R package to analyze oligonucleotide arrays at probe level. Supports Affymetrix (CEL files) and NimbleGen arrays (XYS files). Used for annotation of Affymetrix Gene Array data.
Proper citation: Preprocessing tools for oligonucleotide arrays (RRID:SCR_023726) Copy
Biomedical technology research center that conducts high-sensitivity structural determinations and analyses of biological compounds via mass spectrometry. The emphasis is on glycoconjugates, oligosaccharides and proteins.
Proper citation: BUSM Mass Spectrometry Resource (RRID:SCR_000823) Copy
The BioCurrents Research Center (BRC) is an integrated technology resource of the NIH:NCRR. The activities of the Center focus on molecular physiology as it relates to the cell function and disease. Our particular interest is how the dynamics of cell responses are reflected in the chemical profiles of microdomains surrounding single living cells. In order to measure complex cellular boundary layers, the BRC has specialized in the development of extremely sensitive signal acquisition and processing methods along with miniaturized electrochemical sensor designs. The technique is non-invasive and termed self-referencing. Since its establishment in 1996, the BRC has directed its technological research and development to the design and application of ultra-microelectrodes (tip diameters of less than 10m) tailored for the detection of specific chemicals. These have been successfully applied to the boundary layer profiles of many different cell types, with thematic strength in diabetes research, reproductive health and development (see collaborative profiles). More recently, it is changing its focus to technical developments, enhancing the integrative approach to cell function. To understand a cell as a dynamic and integrated whole, BRC must be able to examine responses from different domains as near to real time and as synchronously as possible. To this end, it is developing imaging capabilities to work in parallel with electrochemistry and conventional electrophysiological techniques. Imaging includes a spinning disc confocal, as well as a low light/luminescent imager designed and built within the BRC. The technologies developed or under development are in high demand within the biomedical community. Over 40 investigators work with the Center each year in a collaborative or service capacity. Over 80 of our visitor pool is NIH funded, representing approximately 25 NIH divisions and institutes. As part of our training and dissemination program we host occasional workshops at major national and international meetings, train a significant number of new investigators each year and host graduate students undertaking portions of their thesis dissertation using our technologies. In dissemination we advise on, and install, electrochemical systems in off campus research endeavors, both academic and industrial.
Proper citation: BioCurrents Research Center (RRID:SCR_002020) Copy
Biomedical technology research center that develops, tests and applies technology aimed toward completely automating the processes involved in solving macromolecular structures using cryo-electron microscopy. The goal is to establish a resource that will serve both as a center for high-throughput molecular microscopy as well as for transferring this technique to the research community. Current Core Technology Research and Development is focused on 4 areas: improving grid substrates and specimen preparation; further automation and optimization of image acquisition; development of an integrated single particle analysis and processing pipeline; and the development of automated high throughput EM screening. NRAMM welcomes applications of both collaborative and service projects.
Proper citation: National Resource for Automated Molecular Microscopy (RRID:SCR_001448) Copy
Biomedical technology research center that develops methods, both experimental and theoretical, of modern electron spin resonance (ESR) for biomedical applications. Center technologies are applicable to the determination of the structure and complex dynamics of proteins. Principal areas of expertise: * Pulsed Fourier Transform and Two Dimensional ESR * High Frequency-High Field (HFHF) ESR * High Resolution ESR Microscopy * Theory and Computational Methods for Modern ESR Activities include: * making resources available to the biomedical community, * publishing results, * running workshops on the new methodologies, * addressing the need to bring these new technologies to other laboratories.
Proper citation: National Biomedical Center for Advanced ESR Technology (RRID:SCR_001444) Copy
Biomedical technology research center and training resource that develops novel fluorescence technologies, including instrumentation, methods and software applicable to cellular imaging and the elucidation of dynamic processes in cells. The LFD's main activities are: * Services and Resources: the LFD provides a state-of-the-art laboratory for fluorescence measurements, microscopy and spectroscopy, with technical assistance to visiting scientists. * Research and Development: the LFD designs, tests, and implements advances in the technology of hardware, software, and biomedical applications. * Training and Dissemination: the LFD disseminates knowledge of fluorescence spectroscopic principles, instrumentation, and applications to the scientific community.
Proper citation: Laboratory for Fluorescence Dynamics (RRID:SCR_001437) Copy
Biomedical technology research center and training resource that is a state-of-the art, national user facility for synchrotron-based studies of dynamic and static properties of macromolecules by X-ray scattering techniques such as crystallography (specializing in time-resolved), small- and wide-angle X-ray scattering and fiber diffraction. BioCARS operates two X-ray beamlines, embedded in a Biosafety Level 3 (BSL-3) facility unique in the U.S. that permits safe studies of biohazardous materials such as human pathogens., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: BioCARS (RRID:SCR_001439) Copy
Biomedical technology resource center specializing in novel approaches and tools for neuroimaging. It develops novel strategies to investigate brain structure and function in their full multidimensional complexity. There is a rapidly growing need for brain models comprehensive enough to represent brain structure and function as they change across time in large populations, in different disease states, across imaging modalities, across age and sex, and even across species. International networks of collaborators are provided with a diverse array of tools to create, analyze, visualize, and interact with models of the brain. A major focus of these collaborations is to develop four-dimensional brain models that track and analyze complex patterns of dynamically changing brain structure in development and disease, expanding investigations of brain structure-function relations to four dimensions.
Proper citation: Laboratory of Neuro Imaging (RRID:SCR_001922) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. Archiving services, insertional site analysis, pharmacology and toxicology resources, and reagent repository for academic investigators and others conducting gene therapy research. Databases and educational resources are open to everyone. Other services are limited to gene therapy investigators working in academic or other non-profit organizations. Stores reserve or back-up clinical grade vector and master cell banks. Maintains samples from any gene therapy related Pharmacology or Toxicology study that has been submitted to FDA by U.S. academic investigator that require storage under Good Laboratory Practices. For certain gene therapy clinical trials, FDA has required post-trial monitoring of patients, evaluating clinical samples for evidence of clonal expansion of cells. To help academic investigators comply with this FDA recommendation, the NGVB offers assistance with clonal analysis using LAM-PCR and LM-PCR technology.
Proper citation: National Gene Vector Biorepository (RRID:SCR_004760) Copy
Biomedical technology research center that focuses on development of unique magnetic resonance (MR) imaging and spectroscopy methodologies and instrumentation for the acquisition of structural, functional, and biochemical information non-invasively in humans, and utilizing this capability to investigate organ function in health and disease. The distinctive feature of this resource is the emphasis on ultrahigh magnetic fields (7 Tesla and above), which was pioneered by this BTRC. This emphasis is based on the premise that there exists significant advantages to extracting biomedical information using ultrahigh magnetic fields, provided difficulties encountered by working at high frequencies corresponding to such high field strengths can be overcome by methodological and engineering solutions. This BTRC is home to some of the most advanced MR instrumentation in the world, complemented by human resources that provide unique expertise in imaging physics, engineering, and signal processing. No single group of scientists can successfully carry out all aspects of this type of interdisciplinary biomedical research; by bringing together these multi-disciplinary capabilities in a synergistic fashion, facilitating these interdisciplinary interactions, and providing adequate and centralized support for them under a central umbrella, this BTRC amplifies the contributions of each of these groups of scientists to basic and clinical biomedical research. Collectively, the approaches and instrumentation developed in this BTRC constitute some of the most important tools used today to study system level organ function and physiology in humans for basic and translational research, and are increasingly applied world-wide. CMRR Faculty conducts research in a variety of areas including: * High field functional brain mapping in humans; methodological developments, mechanistic studies, and neuroscience applications * Metabolism, bioenergetics, and perfusion studies of human pathological states (tumors, obesity, diabetes, hepatic encephalopathy, cystic fibrosis, and psychiatric disorders) * Cardiac bioenergetics under normal and pathological conditions * Automated magnetic field shimming methods that are critical for spectroscopy and ultrafast imaging at high magnetic fields * Development of high field magnetic resonance imaging and spectroscopy techniques for anatomic, physiologic, metabolic, and functional studies in humans and animal models * Radiofrequency (RF) pulse design based on adiabatic principles * Development of magnetic resonance hardware for high fields (e.g. RF coils, pre-amplifiers, digital receivers, phased arrays, etc.) * Development of software for data analysis and display for functional brain mapping.
Proper citation: Center for Magnetic Resonance Research (RRID:SCR_003148) Copy
Biomedical technology research center that develops new algorithms, visualizations and conceptual frameworks to study biological networks at multiple levels and scales, from protein-protein and genetic interactions to cell-cell communication and vast social networks. They are developing freely available, open-source suite of software technology that broadly enables network-based visualization, analysis, and biomedical discovery for NIH-funded researchers. This software is enabling researchers to assemble large-scale biological data into models of networks and pathways and to use these networks to better understand how biological systems operate under normal conditions and how they fail in disease. The National Resource for Network Biology is organized around the following key components: Technology Research and Development, Driving Biomedical Projects, Outreach, Training and Dissemination of Tools. The NRNB supports several types of training events, including both virtual and live workshops; tutorials sessions for clinicians, biologists and bioinformaticians; presentations and demonstrations at conferences; online tutorials and webcasts; and annual symposium.
Proper citation: National Resource for Network Biology (RRID:SCR_004259) Copy
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
Data set of raw anatomical and functional MR data from 72 patients with Schizophrenia and 75 healthy controls (ages ranging from 18 to 65 in each group). All subjects were screened and excluded if they had: history of neurological disorder, history of mental retardation, history of severe head trauma with more than 5 minutes loss of consciousness, history of substance abuse or dependence within the last 12 months. Diagnostic information was collected using the Structured Clinical Interview used for DSM Disorders (SCID). A multi-echo MPRAGE (MEMPR) sequence was used with the following parameters: TR/TE/TI = 2530/(1.64, 3.5, 5.36, 7.22, 9.08)/900 ms, flip angle = 7��, FOV = 256x256 mm, Slab thickness = 176 mm, Matrix = 256x256x176, Voxel size =1x1x1 mm, Number of echos = 5, Pixel bandwidth =650 Hz, Total scan time = 6 min. With 5 echoes, the TR, TI and time to encode partitions for the MEMPR are similar to that of a conventional MPRAGE, resulting in similar GM/WM/CSF contrast. Rest data was collected with single-shot full k-space echo-planar imaging (EPI) with ramp sampling correction using the intercomissural line (AC-PC) as a reference (TR: 2 s, TE: 29 ms, matrix size: 64x64, 32 slices, voxel size: 3x3x4 mm3). Slice Acquisition Order: Rest scan - collected in the Axial plane - series ascending - multi slice mode - interleaved MPRAGE - collected in the Sag plane - series interleaved - multi slice mode - single shot The following data are released for every participant: * Resting fMRI * Anatomical MRI * Phenotypic data for every participant including: gender, age, handedness and diagnostic information.
Proper citation: COBRE (RRID:SCR_010482) Copy
http://www.scienceexchange.com/facilities/genomics-core-facility-brown
Provides genomics and proteomics equipment to researchers at Brown University and to entire Rhode Island research community, as well as assistance with experimental design, trouble shooting, and data analysis. Offers Affymetrix microarray and Illumina NextGeneration services to academic community and external customers.
Proper citation: Brown University Genomics Core Facility (RRID:SCR_012217) Copy
https://www.k-inbre.org/pages/k-inbre_about_bio-core.html
The K-INBRE Bioinformatics Core collaborates with Kansas researchers to perform research on cell and developmental biology. Core aims to serve the needs of investigators engaged in computationally intensive biomedical research, and to promote education in bioinformatics to students and researchers across the state of Kansas.
Proper citation: Kansas State University - INBRE Bioinformatics Core Facility (RRID:SCR_012596) Copy
http://psf.cobre.ku.edu/cores/ppg/about
Core focuses on cloning, expression and purification of prokaryotic and eukaryotic proteins for COBRE and other investigators in Kansas and region. Laboratory maintains equipment to support production of properly folded proteins in quantities suitable for structural studies (X-ray and NMR), functional studies (catalytic or biological), label-free binding studies (SPR) and/or high throughput (HTP) screening studies.
Proper citation: Kansas University at Lawrence Protein Production Group Core Facility (RRID:SCR_017749) Copy
http://bioimaging.dbi.udel.edu
Microscopy facility that houses equipment including confocal microscopes: LSM780 confocal microscope (Located at CBBI),LSM880 confocal microscope (Located at DBI 117),electron microscopes and their accessory instrumentation:Thermo Scientific Apreo VS SEM microscope,Hitachi S-4700, Leica EM ACE600 and Tousimis Autosamdri-815B,CX7 high content analysis system. Our staff has technical expertise across different microscopy platforms and methodologies.
Proper citation: University of Delaware BioImaging Center Core Facility (RRID:SCR_017814) Copy
http://crl.berkeley.edu/molecular-imaging-center/
Microscopy core specializing in laser based fluorescence techniques. Offers training and expertise in 20 different microscope systems, including live cell and in vivo imaging, laser scanning (LSM) and spinning disk (SDC) confocal, multi-photon (2p), fluorescent lifetime imaging (FLIM), light-sheet microscopy (SPIM), super resolution (Airyscan), slide scanning and patterned illumination for optogenetic manipulation and readout. Provides offline computer analysis workstations for image processing, visualization and analysis, including GPU workstations. MIC operates in 3 different buildings on campus, with primary locations in Life Sciences Addition (LSA), North-side core in Barker Hall, and small outpost in Li Ka Shing Center for Biomedical and Health Sciences (LKS).Provides equipment in categories:Confocal and multi photon laser scanning microscopes,Spinning disk confocal microscopes,Lightsheet (SPIM) microscopes,Epifluorescence/widefield scopes and Computer workstations.
Proper citation: University of California at Berkeley Cancer Research Laboratory Molecular Imaging Center Core Facility (RRID:SCR_017852) Copy
https://med.virginia.edu/molecular-electron-microscopy-core/
Facility dedicated to high resolution electron cryomicroscopy and electron cryotomography. It houses three electron microscopes,120kV Spirit, 200kV F20, and 300kV Titan Krios. These microscopes are available to researchers either for direct use, or aided by MEMC personnel, to collect data aimed at high resolution structural biology projects.
Proper citation: University of Virginia School of Medicine Molecular Electron Microscopy Core Facility (RRID:SCR_019031) Copy
Core provides imaging equipment including JEOL 1400 transmission electron microscope with AMT 11 megapixel digital camera,JEOL JSM 6060 scanning electron microscope with attached Oxford INCA energy dispersive spectroscopy detector for element analysis,Nikon Air HD confocal scanning laser microscope, Nikon C2 confocal scanning laser microscope, Andor Spinning Disk confocal microscope, Zeiss LSM 7 Multiphoton confocal microscope, Nikon STORM super-resolution light microscope, Olympus BX50 research microscope for transmitted light, phase contrast, and epi-fluorescence microscopy, Asylum Research MFP-3D BIO atomic force microscope, Asylum Research Cypher Environmental atomic force microscope,Arcturus XT-Ti Laser Capture Microdissector system, Olympus IX70 inverted microscope with associated Applied BioPhysics Electri Cell-Substrate Impedance Sensing (ECIS Ztheta) system, Leica VERSA 8 whole slide imager, Dell workstations containing Molecular Devices MetaMorph image analysis software for complex quantitative image analysis, Indica Labs HALO software, Improvision Volocity, MBR StereoInvestigator.
Proper citation: Vermont University Larner College of Medicine Microscopy Imaging Center Core Facility (RRID:SCR_018821) Copy
http://nemoursresearch.org/cores/bcl/
Develops research projects in pediatric genetics and provides essential services in molecular biology and genetics to Nemours clinicians and research staff and to affiliates researchers of University of Delaware and Thomas Jefferson University. Resource for staff of Alfred I. duPont Hospital for Children, Nemours affiliates, COBRE / INBRE investigators and outside customers. Offers expertise in molecular genetics and genomics. Operates according to policies set forth by federal CLIA standards.Services provided include Ion Torrent PGM Next Generation Sequencing, QuantStudio (QS) 3D Digital PCR, Cell Line Authentication, Nucleic Acid Quality Number (AATI Fragment Analyzer),Genotyping including Allelic Discrimination Probes (SNP Real-Time PCR), Affymetrix Microarray (CNV CytoScan, SNP arrays), Fragment Analysis (Capillary Electrophoresis up to 1200 bp), DNA Sequencing (Sanger Sequencing), Expression Analysis including Affymetrix Microarray (global gene expression, transcriptome assays), Pathway-focused Real-Time qPCR (mRNA and miRNA). Shared Instrumentation including Beckman Biomek 3000 Liquid Handler, NanoDrop 2000c, ABI7900 384-well Real-Time Genetic Analyzer, PCR Tamer, Thermocyclers.
Proper citation: Nemours Biomolecular Core Facility (RRID:SCR_018265) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.