Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.idoimaging.com/program/280
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 6, 2023.Comprised of a large array of sophisticated programs, this comprehensive software package with tools based around the MINC file format. Utilities are provided for conversion, viewing, editing, registering, segmentation, and a wide array of analysis. Many programs are in Perl. MINC software tools for neurological imaging are free. Input format: Analyze, DICOM, Minc
Proper citation: MINC Brain Imaging Toolbox (RRID:SCR_003519) Copy
miniTUBA is a web-based modeling system that allows clinical and biomedical researchers to perform complex medical/clinical inference and prediction using dynamic Bayesian network analysis with temporal datasets. The software allows users to choose different analysis parameters (e.g. Markov lags and prior topology), and continuously update their data and refine their results. miniTUBA can make temporal predictions to suggest interventions based on an automated learning process pipeline using all data provided. Preliminary tests using synthetic data and laboratory research data indicate that miniTUBA accurately identifies regulatory network structures from temporal data. miniTUBA represents in a network view possible influences that occur between time varying variables in your dataset. For these networks of influence, miniTUBA predicts time courses of disease progression or response to therapies. minTUBA offers a probabilistic framework that is suitable for medical inference in datasets that are noisy. It conducts simulations and learning processes for predictive outcomes. The DBN analysis conducted by miniTUBA describes from variables that you specify how multiple measures at different time points in various variables influence each other. The DBN analysis then finds the probability of the model that best fits the data. A DBN analysis runs every combination of all the data; it examines a large space of possible relationships between variables, including linear, non-linear, and multi-state relationships; and it creates chains of causation, suggesting a sequence of events required to produce a particular outcome. Such chains of causation networks - are difficult to extract using other machine learning techniques. DBN then scores the resulting networks and ranks them in terms of how much structured information they contain compared to all possible models of the data. Models that fit well have higher scores. Output of a miniTUBA analysis provides the ten top-scoring networks of interacting influences that may be predictive of both disease progression and the impact of clinical interventions and probability tables for interpreting results. The DBN analysis that miniTUBA provides is especially good for biomedical experiments or clinical studies in which you collect data different time intervals. Applications of miniTUBA to biomedical problems include analyses of biomarkers and clinical datasets and other cases described on the miniTUBA website. To run a DBN with miniTUBA, you can set a number of parameters and constrain results by modifying structural priors (i.e. forcing or forbidding certain connections so that direction of influence reflects actual biological relationships). You can specify how to group variables into bins for analysis (called discretizing) and set the DBN execution time. You can also set and re-set the time lag to use in the analysis between the start of an event and the observation of its effect, and you can select to analyze only particular subsets of variables.
Proper citation: miniTUBA (RRID:SCR_003447) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2019.
Database for those interested in the consequences of Factor VIII genetic variation at the DNA and protein level, it provides access to data on the molecular pathology of haemophilia A. The database presents a review of the structure and function of factor VIII and the molecular genetics of haemophilia A, a real time update of the biostatistics of each parameter in the database, a molecular model of the A1, A2 and A3 domains of the factor VIII protein (based on the crystal structure of caeruloplasmin) and a bulletin board for discussion of issues in the molecular biology of factor VIII. The database is completely updated with easy submission of point mutations, deletions and insertions via e-mail of custom-designed forms. A methods section devoted to mutation detection is available, highlighting issues such as choice of technique and PCR primer sequences. The FVIII structure section now includes a download of a FVIII A domain homology model in Protein Data Bank format and a multiple alignment of the FVIII amino-acid sequences from four species (human, murine, porcine and canine) in addition to the virtual reality simulations, secondary structural data and FVIII animation already available. Finally, to aid navigation across this site, a clickable roadmap of the main features provides easy access to the page desired. Their intention is that continued development and updating of the site shall provide workers in the fields of molecular and structural biology with a one-stop resource site to facilitate FVIII research and education. To submit your mutants to the Haemophilia A Mutation Database email the details. (Refer to Submission Guidelines)
Proper citation: HAMSTeRS - The Haemophilia A Mutation Structure Test and Resource Site (RRID:SCR_006883) Copy
http://www.physionet.org/physiotools/
Growing library of software for physiologic signal processing and analysis, detection of physiologically significant events using both classical techniques and novel methods based on statistical physics and nonlinear dynamics, interactive display and characterization of signals, creation of new databases, simulation of physiologic and other signals, quantitative evaluation and comparison of analysis methods, and analysis of nonequilibrium and nonstationary processes. A unifying theme of the research projects that contribute software to PhysioToolkit is the extraction of hidden information from biomedical signals, information that may have diagnostic or prognostic value in medicine, or explanatory or predictive power in basic research. Contributions of software to PhysioToolkit are welcome, http://physionet.org/guidelines.shtml#software-contributions
Proper citation: PhysioToolkit (RRID:SCR_006868) Copy
http://geneontology.org/docs/tools-overview/
Collection of tools developed by GO Consortium and by third parties. Tools are listed by category or alphabetically and continue to be improved and expanded.
Proper citation: Gene Ontology Tools (RRID:SCR_006941) Copy
http://www.bmu.psychiatry.cam.ac.uk/software/
Suite of programs developed for fMRI analysis in a Virtual Pipeline Laboratory facilitates combining program modules from different software packages into processing pipelines to create analysis solutions which are not possible with a single software package alone. Current pipelines include fMRI analysis, statistical testing based on randomization methods and fractal spectral analysis. Pipelines are continually being added. The software is mostly written in C. This fMRI analysis package supports batch processing and comprises the following general functions at the first level of individual image analysis: movement correction (interpolation and regression), time series modeling, data resampling in the wavelet domain, hypothesis testing at voxel and cluster levels. Additionally, there is code for second level analysis - group and factorial or ANOVA mapping - after co-registration of voxel statistic maps from individual images in a standard space. The main point of difference from other fMRI analysis packages is the emphasis throughout on the use of data resampling (permutation or randomization) as a basis for inference on individual, group and factorial test statistics at voxel and cluster levels of resolution.
Proper citation: Cambridge Brain Activation (RRID:SCR_007109) Copy
http://weizhong-lab.ucsd.edu/cd-hit/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software program for clustering biological sequences with many applications in various fields such as making non-redundant databases, finding duplicates, identifying protein families, filtering sequence errors and improving sequence assembly etc. It is very fast and can handle extremely large databases. CD-HIT helps to significantly reduce the computational and manual efforts in many sequence analysis tasks and aids in understanding the data structure and correct the bias within a dataset. The CD-HIT package has CD-HIT, CD-HIT-2D, CD-HIT-EST, CD-HIT-EST-2D, CD-HIT-454, CD-HIT-PARA, PSI-CD-HIT, CD-HIT-OTU and over a dozen scripts. * CD-HIT (CD-HIT-EST) clusters similar proteins (DNAs) into clusters that meet a user-defined similarity threshold. * CD-HIT-2D (CD-HIT-EST-2D) compares 2 datasets and identifies the sequences in db2 that are similar to db1 above a threshold. * CD-HIT-454 identifies natural and artificial duplicates from pyrosequencing reads. * CD-HIT-OTU cluster rRNA tags into OTUs The usage of other programs and scripts can be found in CD-HIT user''s guide. CD-HIT was originally developed by Dr. Weizhong Li at Dr. Adam Godzik''s Lab at the Burnham Institute (now Sanford-Burnham Medical Research Institute)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: CD-HIT (RRID:SCR_007105) Copy
Knowledge management system designed to handle neurobiological information at different levels of organization of vertebrate nervous system. Database and repository for information about neural circuitry, storing and analyzing data concerned with nomenclature, taxonomy, axonal connections, and neuronal cell types. Handles data and metadata collated from original literature, or inserted by scientists that is associated to four levels of organization of vertebrate nervous system. Data about expressed molecules, neuron types and classes, brain regions, and networks of brain regions.
Proper citation: Brain Architecture Management System (RRID:SCR_007251) Copy
http://wwwmgs.bionet.nsc.ru/mgs/gnw/about.shtml
GeneNetWorks is designed for accumulation of experimental data, data navigation, data analysis, and analysis of dependencies in the field of gene expression regulation. It integrates the databases and programs for processing the data about structure and function of DNA, RNA, and proteins, together with the other information resources important for gene expression description. The unique property of above described system is that all the resources within the system GeneNetWorks are divided according to the natural hierarchy of molecular genetic systems and has the following levels: (1) DNA; (2) RNA; (3) proteins; and (4) gene networks. Each module contains: 1) experimental data represented as a database or some sample; 2) program for data analysis; 3) results of an automated data processing; 4) tools for the graphical representation of these data and the results of the data analyses.
Proper citation: GeneNetWorks (RRID:SCR_008034) Copy
Genomatix is a privately held company that offers software, databases, and services aimed at understanding gene regulation at the molecular level representing a central part of systems biology. Its multilayer integrative approach is a working implementation of systems biology principles. Genomatix combines sequence analysis, functional promoter analysis, proprietary genome annotation, promoter sequence databases, comparative genomics, scientific literature data mining, pathway databases, biological network databases, pathway analysis, network analysis, and expression profiling into working solutions and pipelines. It also enables better understanding of biological mechanisms under different conditions and stimuli in the biological context of your data. Some of Genomatix'' most valuable assets are the strong scientific background and the years of experience in research & discovery as well as in development & application of scientific software. Their firsthand knowledge of all the complexities involved in the in-silico analysis of biological data makes them a first-rate partner for all scientific projects involving the evaluation of gene regulatory mechanisms. The Genomatix team has more than a decade of scientific expertise in the successful application of computer aided analysis of gene regulatory networks, which is reflected by more than 150 peer reviewed scientific publications from Genomatix'' scientists More than 35,000 researchers in industry and academia around the world use this technology. The software available in Genomatix are: - GenomatixSuite: GenomatixSuite is our comprehensive software bundle including ElDorado, Gene2Promoter, GEMS Launcher, MatInspector and MatBase. GenomatixSuite PE also includes BiblioSphere Pathway Edition. Chromatin IP Software - RegionMiner: Fast, extensive analysis of genomic regions. - ChipInspector: Discover the real power of your microarray data. Genome Annotation Software - ElDorado: Extended Genome Annotation. - Gene2Promoter: Retrieve & analyze promoters - GPD: The Genomatix Promoter Database, which is now included with Gene2Promoter. Knowledge Mining Software - BiblioSpere : The next level of pathway/genomics analysis. - LitInspector: Literature and pathway analysis for free. Sequence Analysis Software - GEMS Launcher: Our integrated collection of sequence analysis tools. - MalInspector: Search transcription factor binding sites - MatBase: The transcription factor knowledge base. Other (no registration required) Software - DiAlign: Multiple alignment of DNA/protein sequence. - Genomatix tools: Various small tools for sequence statistics, extraction, formatting, etc.
Proper citation: Genomatix Software: Understanding Gene Regulation (RRID:SCR_008036) Copy
http://www.oege.org/software/hwe-mr-calc.shtml
This portal leads to the Chi-sq Hardy-Weinberg equilibrium test calculator for biallelic markers (SNPs, indels etc), including analysis for ascertainment bias for dominant/recessive models (due to biological or technical causes.) The purpose of this web program is for estimating possible missingness and an approach to evaluating missingness under different genetic models. Mendelian randomization (MR) permits causal inference between exposures and a disease. It can be compared with randomized controlled trials. Whereas in a randomized controlled trial the randomization occurs at entry into the trial, in MR the randomization occurs during gamete formation and conception. Several factors, including time since conception and sampling variation, are relevant to the interpretation of an MR test. Particularly important is consideration of the missingness of genotypes that can be originated by chance, genotyping errors, or clinical ascertainment. Testing for Hardy-Weinberg equilibrium (HWE) is a genetic approach that permits evaluation of missingness. Through this tool, the authors demonstrate evidence of nonconformity with HWE in real data. They also perform simulations to characterize the sensitivity of HWE tests to missingness. Unresolved missingness could lead to a false rejection of causality in an MR investigation of trait-disease association. These results indicate that large-scale studies, very high quality genotyping data, and detailed knowledge of the life-course genetics of the alleles/genotypes studied will largely mitigate this risk. Sponsors: This resource is supported by an Intermediate Fellowship (grant FS/05/065/19497) from the British Heart Foundation.
Proper citation: Hardy-Weinberg Equilibrium Calculator (RRID:SCR_008371) Copy
http://jcb-dataviewer.rupress.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 14,2026. A web-based, multi-dimensional image data-viewing application for original microscopy image datasets associated with articles published in The Journal of Cell Biology, a peer-reviewed journal published by The Rockefeller University Press. The JCB DataViewer can host multidimensional fluorescence microscopy images, 3D tomogram data, very large (gigapixel) images, and high content imaging screens. Images are presented in an interactive viewer, and the scores from high content screens are presented in interactive graphs with data points linked to the relevant images. The JCB DataViewer uses the Bio-Formats library to read over 120 different imaging file formats and convert them to the OME-TIFF image data standard. Image data are archived by the Journal and may be freely accessed by readers using the JCB DataViewer. Download of author-provided image data and associated metadata in OME-TIFF format is also possible with author permission, allowing for independent analysis of image data irrespective of acquisition or viewing software. Although the JCB DataViewer is designed to host and facilitate sharing and analysis of original microscopy image data, authors may also upload other types of original image data as supplements to their manuscripts, including histology and electron micrographs and digital scans of gels or blots.
Proper citation: JCB DataViewer (RRID:SCR_002633) Copy
http://www.fmrib.ox.ac.uk/fsl/
Software library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. Include registration, atlases, diffusion MRI tools for parameter reconstruction and probabilistic taractography, and viewer. Several brain atlases, integrated into FSLView and Featquery, allow viewing of structural and cytoarchitectonic standard space labels and probability maps for cortical and subcortical structures and white matter tracts. Includes Harvard-Oxford cortical and subcortical structural atlases, Julich histological atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Talairach atlas, MNI structural atlas, and Cerebellum atlas.
Proper citation: FSL (RRID:SCR_002823) Copy
http://sourceforge.net/projects/bio-rainbow/
Software developed to provide an ultra-fast and memory-efficient solution to clustering and assembling short reads produced by RAD-seq.
Proper citation: Rainbow (RRID:SCR_002724) Copy
http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Main_Page
Laboratory portal, including software, web-based tools, databases and data sets, related to their research that focuses on the development and application of biophysical and bioinformatics methods aimed at understanding the structural and energetic origins of protein-protein, protein-nucleic acid, and protein-membrane interactions. Their work includes fundamental theoretical research, the development of software tools, and applications to problems of biological importance. In this regard they maintain an active collaborative computational and experimental research program on the molecular basis of cell-cell adhesion. Other problems of current interest include protein structure prediction, the organization of protein sequence/structure space, the prediction of protein function based on protein structure, the structural origins of specificity in protein-DNA interactions, RNA function and, more generally, the electrostatic properties of biological macromolecules.
Proper citation: Honig Lab (RRID:SCR_003410) Copy
http://www.nanostring.com/products/nSolver
Data analysis software program that offers nCounter users the ability to QC, normalize, and analyze data without having to purchase additional software packages.
Proper citation: nSolver Analysis Software (RRID:SCR_003420) Copy
Nematode & Neglected Genomics (at) The Blaxter Lab is a nematode related portal including databases and services. Resources include genomic and transcriptomic databases for nematodes and other metazoan phyla and freely downloadable software tools for expressed sequence tag analysis, DNA barcode analysis and phylogenomics. Major categories include: * GenePool * 959 Nematode Genomes * Teaching * Research Projects * Bioinformatics Software Tools * Lab Personnel * Lab Wiki * Genomics Databases * NEMBASE4 * Tardigrada: Hypsibius dujardini * Earthworm: Lumbricus rubellus * MolluscDB * ArthropodDB * other Neglected Genomes
Proper citation: nematodes.org (RRID:SCR_003267) Copy
http://www.broadinstitute.org/cancer/software/genepattern
A powerful genomic analysis platform that provides access to hundreds of tools for gene expression analysis, proteomics, SNP analysis, flow cytometry, RNA-seq analysis, and common data processing tasks. A web-based interface provides easy access to these tools and allows the creation of multi-step analysis pipelines that enable reproducible in silico research.
Proper citation: GenePattern (RRID:SCR_003201) Copy
http://www.farsight-toolkit.org/wiki/FARSIGHT_Toolkit
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23, 2022. A collection of software modules for image data handling, pre-processing, segmentation, inspection, editing, post-processing, and secondary analysis. These modules can be scripted to accomplish a variety of automated image analysis tasks. All of the modules are written in accordance with software practices of the Insight Toolkit Community. Importantly, all modules are accessible through the Python scripting language which allows users to create scripts to accomplish sophisticated associative image analysis tasks over multi-dimensional microscopy image data. This language works on most computing platforms, providing a high degree of platform independence. Another important design principle is the use of standardized XML file formats for data interchange between modules.
Proper citation: Farsight Toolkit (RRID:SCR_001728) Copy
Website for analyzing microarray data. Software toolbox for storing, analyzing and integrating microarray data and related genotype and phenotype data. The site is particularly suited for combining QTL and microarray data to search for candidate genes contributing to complex traits. In addition, the site allows, if desired by the investigators, sharing of the data. Investigators can conduct in-silico microarray experiments using their own and/or shared data. There are five major sections of the site: Genome/Transcriptome Data Browser, Microarray Analysis Tools, Gene List Analysis Tools, QTL Tools, and Downloads. The genome/transcriptome data browser combines a genome browser with all the microarray, RNA-Seq, and Genomic Sequencing data. This provides an effective platform to view all of this data side by side. Source code is available on GitHub.
Proper citation: PhenoGen Informatics (RRID:SCR_001613) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.