Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A database, catalog and index to the collections of the National Agricultural Library, as well as a primary public source for world-wide access to agricultural information. This database resource covers materials in all formats and periods, including printed works from as far back as the 15th century. AGRICOLA is a bibliographic database of citations to the agricultural literature created by the National Agricultural Library and its cooperators. The records describe publications and resources encompassing all aspects of agriculture and allied disciplines, including animal and veterinary sciences, entomology, plant sciences, forestry, aquaculture and fisheries, farming and farming systems, agricultural economics, extension and education, food and human nutrition, and earth and environmental sciences. Although the NAL Catalog (AGRICOLA) does not contain the text of the materials it cites, thousands of its records are linked to full-text documents online, with new links added daily. The NAL Catalog (AGRICOLA) is organized into two bibliographic data sets: *The NAL Online Public Access Catalog (AGRICOLA NAL) contains citations to books, audiovisuals, serials, and other materials, most of which are in the Library''s collection. (The Catalog does contain some records for items not held at NAL.) *The Article Citation Database (AGRICOLA IND) includes citations, many with abstracts, to journal articles (see Journals Indexed in AGRICOLA), book chapters, reports, and reprints, selected primarily from the materials found in the NAL Catalog.
Proper citation: AGRICOLA (RRID:SCR_008158) Copy
http://mpr.nci.nih.gov/MPR/BrowseProteins.aspx
THIS RESOURCE IS NO LONGER IN SERVICE, documented on 6/24/13. A repository of information on commercially available phospho-specific antibodies to human phosphorylation sites. It provides a BLAST search for phosphorylation sites using as query the amino acid sequence surrounding the site. It also provides direct links to the relevant antibodies from many companies including BD Pharmingen, Biosource International, Cell Signaling Technology (CST), Santa Cruz Biotechnologies, Upstate Biotechnology.
Proper citation: Mammalian Phosphorylation Resource (RRID:SCR_008210) Copy
http://chromium.lovd.nl/LOVD2/home.php?select_db=CDKN2A
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The CDKN2A Database presents the germline and somatic variants of the CDKN2A tumor suppressor gene recorded in human disease through June 2003, annotated with evolutionary, structural, and functional information, in a format that allows the user to either download it or manipulate it for their purposes online. The goal is to provide a database that can be used as a resource by researchers and geneticists and that aids in the interpretation of CDKN2A missense variants. Most online mutation databases present flat files that cannot be manipulated, are often incomplete, and have varying degrees of annotation that may or may not help to interpret the data. They hope to use CDKN2A as a prototype for integrating computational and laboratory data to help interpret variants in other cancer-related genes and other single nucleotide polymorphisms (SNPs) found throughout the genome. Another goal of the lab is to interpret the functional and disease significance of missense variants in cancer susceptibility genes. Eventually, these results will be relevant to the interpretation of single nucleotide polymorphisms (SNPs) in general. The CDKN2A locus is a valuable model for assessing relationships among variation, structure, function, and disease because: Variants of this gene are associated with hereditary cancer: Familial Melanoma (and related syndromes); somatic alterations play a role in carcinogenesis; allelic variants occur whose functional consequences are unknown; reliable functional assays exist; and crystal structure is known. All variants in the database are recorded according to the nomenclature guidelines as outlined by the Human Genome Variation Society. This database is currently designed for research purposes only and is not yet recommended as a clinical resource. Many of the mutations reported here have not been tested for disease association and may represent normal, non-disease causing polymorphisms.
Proper citation: CDKN2A Database (RRID:SCR_008179) Copy
http://jbirc.jbic.or.jp/hinv/ppi/
The PPI view displays H-InvDB human protein-protein interaction (PPI) information. It is constructed by assigning interaction data to H-InvDB proteins which were originally predicted from transcriptional products generated by the H-Invitational project. The PPI view is now providing 32,198 human PPIs comprised of 9,268 H-InvDB proteins. H-Invitational Database (H-InvDB) is an integrated database of human genes and transcripts. By extensive analyses of all human transcripts, we provide curated annotations of human genes and transcripts that include gene structures, alternative splicing isoforms, non-coding functional RNAs, protein functions, functional domains, sub-cellular localizations, metabolic pathways, protein 3D structure, genetic polymorphisms (SNPs, indels and microsatellite repeats) , relation with diseases, gene expression profiling, molecular evolutionary features, protein-protein interactions (PPIs) and gene families/groups. Sponsors: This research is financially supported by the Ministry of Economy, Trade and Industry of Japan (METI), the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) and the Japan Biological Informatics Consortium (JBIC). Also, this work is partly supported by the Research Grant for the RIKEN Genome Exploration Research Project from MEXT to Y.H. and the Grant for the RIKEN Frontier Research System, Functional RNA research program.
Proper citation: H-Invitational Database: Protein-Protein Interaction Viewer (RRID:SCR_008054) Copy
http://www.genoscope.cns.fr/externe/tetraodon/
The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.
Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.
Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy
http://www.visionnetwork.nei.nih.gov/
The National Eye Institute (NEI) created the VISION Public Information Network for the purpose of communicating with public information officers at NEI grantee institutions. The Network''s primary mission is to work with the NEI in disseminating research results to the national and local media. The Network also works to inform the public of the mission of the National Institutes of Health (NIH) to improve the health of America through medical research. The NEI is part of the NIH, U.S. Department of Health and Human Services (DHHS). General information portal for eye and vision related resources for the public. Sponsors: This resource is supported by the National Eye Institute.
Proper citation: Vision Public Information Network (RRID:SCR_007340) Copy
http://genome.wustl.edu/projects/detail/human-gut-microbiome/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2022. Human Gut Microbiome Initiative (HGMI) seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota. Humans are supra-organisms, composed of 10 times more microbial cells than human cells. Therefore, it seems appropriate to consider ourselves as a composite of many species - human, bacterial, and archaeal - and our genome as an amalgamation of human genes and the genes in ''our'' microbial genomes (''microbiome''). In the same sense, our metabolome can be considered to be a synthesis of co-evolved human and microbial traits. The total number of genes present in the human microbiome likely exceeds the number of our H. sapiens genes by orders of magnitude. Thus, without an understanding of our microbiota and microbiome, it not possible to obtain a complete picture of our genetic diversity and of our normal physiology. Our intestine is home to our largest collections of microbes: bacterial densities in the colon (up to 1 trillion cells/ml of luminal contents) are the highest recorded for any known ecosystem. The vast majority of phylogenetic types in the distal gut microbiota belong to just two divisions (phyla) of the domain Bacteria - the Bacteroidetes and the Firmicutes. Members of eight other divisions have also been identified using culture-independent 16S rRNA gene-based surveys. Metagenomic studies of complex microbial communities residing in our various body habitats are limited by the availability of suitable reference genomes for confident assignment of short sequence reads generated by highly parallel DNA sequencers, and by knowledge of the professions (niches) of community members. Therefore, HGMI, which represents a collaboration between Washington University''s Genome Center and its Center for Genome Sciences, seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota.
Proper citation: Human Gut Microbiome Initiative (RRID:SCR_008137) Copy
A collection of images of the human nervous system focusing on disease and injury.
Proper citation: Human Nervous System Disease and Injury (RRID:SCR_006370) Copy
http://www.gene-regulation.com/pub/databases.html
In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.
Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy
http://ncv.unl.edu/Angelettilab/HPV/Database.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.
Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy
http://www.animalgenome.org/pigs/nagrp.html
Database and resources on the pig genome.
Proper citation: U.S. Pig Genome Project (RRID:SCR_008151) Copy
Center that supports studies of nonhuman primate models of human diseases, including common chronic diseases and infectious diseases and the effects that genetics and the environment have on physiological processes and disease susceptibility. SNPRC encourages the use of its resources by investigators from the national and international biomedical research communities.
Proper citation: Southwest National Primate Research Center (RRID:SCR_008292) Copy
PathoNet is a virtual meeting place for pathologists from all over the world. They can use it as a virtual pathology laboratory in which they can exchange their views on their cases. Join us and share your experience. Special or rare cases maybe very useful in the diagnostic practice. Everybody who would like to use digital microscopy in human, veterinary or forensic pathology; in laboratory medicine, in human anatomy; in experimental research, and when teaching can benefit from this resource. Additionally, practicing physicians, students, tutors, experts and researchers can all contribute and benefit from PathoNet. Sponsors: This resource is supported by 3DHISTECH Ltd.
Proper citation: PATHONET (RRID:SCR_008674) Copy
http://www.brain-dynamics.net/
The Brain Dynamics Centre (BDC) is a network of centers and units. It achieves a unique exploration of the healthy brain and disorders of brain function. It translates these insights into new ways to tailor treatments to the individual. There approach is: "integrative neuroscience" - bringing together clinical observations, theory, and modern imaging technologies. And it's theoretical framework derives from linking physiology, psychology and evolution. Additionally, BDC also actively researches ADHD and conduct disorder, stress and trauma-related problems, depression and anxiety, anorexia nervosa, psychosis (including early onset) and conversion disorders. The research facilities DBC include assessment, rooms, two cognition-brain function laboratories, genotyping and an MRI Suite with 1.5 and 3T GE systems. BDC is the coordinating site for an international network - BRAINnet. It has over 180 members, and coordinates access to the first standardized database on the human brain for scientific purposes: Brain Resource International Database.
Proper citation: Brain Dynamics Centre (RRID:SCR_001685) Copy
http://www.cognitiveatlas.org/
Knowledge base (or ontology) that characterizes the state of current thought in cognitive science that captures knowledge from users with expertise in psychology, cognitive science, and neuroscience. There are two basic kinds of knowledge in the knowledge base. Terms provide definitions and properties for individual concepts and tasks. Assertions describe relations between terms in the same way that a sentence describes relations between parts of speech. The goal is to develop a knowledge base that will support annotation of data in databases, as well as supporting improved discourse in the community. It is open to all interested researchers. A fundamental feature of the knowledge base is the desire and ability to capture not just agreement but also disagreement regarding definitions and assertions. Thus, if you see a definition or assertion that you disagree with, then you can assert and describe your disagreement. The project is led by Russell Poldrack, Professor of Psychology and Neurobiology at the University of Texas at Austin in collaboration with the UCLA Center for Computational Biology (A. Toga, PI) and UCLA Consortium for Neuropsychiatric Phenomics (R. Bilder, PI). Most tasks used in cognitive psychology research are not identical across different laboratories or even within the same laboratory over time. A major advantage of anchoring cognitive ontologies to the measurement level is that the strategy for determining changes in task properties is easier than tracking changes in concept definitions and usage. The process is easier because task parameters are usually (if not always) operationalized objectively, offering a clear basis to judge divergence in methods. The process is also easier because most tasks are based on prior tasks, and thus can more readily be considered descendants in a phylogenetic sense.
Proper citation: Cognitive Atlas (RRID:SCR_002793) Copy
http://opencourse.org/Collaboratories/harveyproject/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. It is an international collaboration of educators, researchers, physicians, students, programmers, instructional designers and graphic artists working together to build interactive, dynamic human physiology course materials on the Web. Sponsors: This work has received funding from the US National Science Foundation.
Proper citation: Harvey Project: Open Course Collaboratories (RRID:SCR_001887) Copy
http://www-genome.stanford.edu/
This resource hyperlinks to systematic analysis projects, resources, laboratories, and departments at Stanford University.
Proper citation: Stanford Genomic Resourses (RRID:SCR_001874) Copy
http://americaninstituteofstress.org/interviews/
From time to time the Editor of Health and Stress interviews leaders in the field of stress management on a variety of topics for inclusion in our publications. Some interviews are listed below. For a complete list of interviews and content, you must be a member of AIS and access the Archives.
Proper citation: American Institute of Stress Interviews (RRID:SCR_005420) Copy
http://publications.nigms.nih.gov/computinglife/
An NIGMS magazine that showcases the exciting ways that scientists are using the power of computers to expand our knowledge of biology and medicine. From text messaging friends to navigating city streets with GPS technology, we''re all living the computing life. But as we''ve upgraded from snail mail and compasses, so too have scientists. Computer advances now let researchers quickly search through DNA sequences to find gene variations that could lead to disease, simulate how flu might spread through your school and design three-dimensional animations of molecules that rival any video game. By teaming computers and biology, scientists can answer new and old questions that could offer insights into the fundamental processes that keep us alive and make us sick. This booklet introduces you to just some of the ways that physicists, biologists and even artists are computing life. Each section focuses on a different research problem, offers examples of current scientific projects and acquaints you with the people conducting the work. You can follow the links for online extras and other opportunities to learn aboutand get involved inthis exciting new interdisciplinary field.
Proper citation: NIGMS Computing Life (RRID:SCR_005850) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.