Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 109 results
Snippet view Table view Download 109 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_013023

    This resource has 10+ mentions.

http://www.benoslab.pitt.edu/comir/

Data analysis service that predicts whether a given mRNA is targeted by a set of miRNAs. ComiR uses miRNA expression to improve and combine multiple miRNA targets for each of the four prediction algorithms: miRanda, PITA, TargetScan and mirSVR. The composite scores of the four algorithms are then combined using a support vector machine trained on Drosophila Ago1 IP data.

Proper citation: ComiR (RRID:SCR_013023) Copy   


  • RRID:SCR_018961

    This resource has 1+ mentions.

https://www.robotreviewer.net/

Software tool as machine learning system that automatically assesses bias in clinical trials. From PDF formatted trial report determines risks of bias for domains defined by Cochrane Risk of Bias (RoB) tool, and extracts supporting text for these judgments.

Proper citation: Robot Reviewer (RRID:SCR_018961) Copy   


  • RRID:SCR_027742

https://github.com/McGranahanLab/TcellExTRECT

Software R package to calculate T cell fractions from WES data from hg19 or hg38 aligned genomes.

Proper citation: T Cell ExTRECT (RRID:SCR_027742) Copy   


  • RRID:SCR_005323

    This resource has 1+ mentions.

http://www.coremine.com/medical/#search

Service to access comprehensive information on diseases, drugs, treatments and medical biology. It is ideal for those seeking an overview of a complex subject while allowing the possibility to drill down to specific details. Search results are presented in a dashboard format comprized of panels containing various categories of information ranging from introductory sources to the latest scientific articles.

Proper citation: Coremine Medical (RRID:SCR_005323) Copy   


  • RRID:SCR_004801

    This resource has 10000+ mentions.

http://www.ncbi.nlm.nih.gov/bioproject

Database of biological data related to a single initiative, originating from a single organization or from a consortium. A BioProject record provides users a single place to find links to the diverse data types generated for that project. It is a searchable collection of complete and incomplete (in-progress) large-scale sequencing, assembly, annotation, and mapping projects for cellular organisms. Submissions are supported by a web-based Submission Portal. The database facilitates organization and classification of project data submitted to NCBI, EBI and DDBJ databases that captures descriptive information about research projects that result in high volume submissions to archival databases, ties together related data across multiple archives and serves as a central portal by which to inform users of data availability. BioProject records link to corresponding data stored in archival repositories. The BioProject resource is a redesigned, expanded, replacement of the NCBI Genome Project resource. The redesign adds tracking of several data elements including more precise information about a project''''s scope, material, and objectives. Genome Project identifiers are retained in the BioProject as the ID value for a record, and an Accession number has been added. Database content is exchanged with other members of the International Nucleotide Sequence Database Collaboration (INSDC). BioProject is accessible via FTP.

Proper citation: NCBI BioProject (RRID:SCR_004801) Copy   


http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?DARTETIC

Bibliographic database providing references to developmental and reproductive toxicology literature on the National Library of Medicine's Toxicology Data Network. It covers teratology and other aspects of developmental and reproductive toxicology. It contains over 200,000 references to literature published since 1965. DART/ETIC is easily accessible and free of charge. Search by subject terms, title words, chemical name, Chemical Abstracts Service Registry Number (RN), and author. Search results can easily be viewed, printed or downloaded. Search results are displayed in relevancy ranked order, but may be sorted by publication date, author or title.

Proper citation: Developmental and Reproductive Toxicology Database (RRID:SCR_002326) Copy   


  • RRID:SCR_003459

    This resource has 1+ mentions.

http://www.ncbi.nlm.nih.gov/proteinclusters

Database of related protein sequences (clusters) consisting of proteins derived from the annotations of whole genomes, organelles and plasmids. It currently limited to Archaea, Bacteria, Plants, Fungi, Protozoans, and Viruses. It contains annotation information, publications, domains, structures, and external links and analysis tools including multiple alignments, phylogenetic trees, and genomic neighborhoods (ProtMap). Data is available for download via Protein Clusters FTP

Proper citation: Protein Clusters (RRID:SCR_003459) Copy   


http://proteininformationresource.org/

Integrated public bioinformatics resource to support genomic, proteomic and systems biology research and scientific studies. Provides databases and protein sequence analysis tools to scientific community, including Protein Sequence Database which grew out from the Atlas of Protein Sequence and Structure. Conducts research in biomedical text mining and ontology, computational systems biology, and bioinformatics cyberinfrastructure. In 2002 PIR, along with its international partners, EBI (European Bioinformatics Institute) and SIB (Swiss Institute of Bioinformatics), were awarded a grant from NIH to create UniProt, a single worldwide database of protein sequence and function, by unifying the PIR-PSD, Swiss-Prot, and TrEMBL databases. Currently, PIR major activities include: i) UniProt (Universal Protein Resource) development, ii) iProClass protein data integration and ID mapping, iii) PRO protein ontology, and iv) iProLINK protein literature mining and ontology development. The FTP site provides free download for iProClass, PIRSF, and PRO.

Proper citation: Protein Information Resource (RRID:SCR_002837) Copy   


  • RRID:SCR_006293

    This resource has 1+ mentions.

https://open.med.harvard.edu/display/SHRINE/Community

Software providing a scalable query and aggregation mechanism that enables federated queries across many independently operated patient databases. This platform enables clinical researchers to solve the problem of identifying sufficient numbers of patients to include in their studies by querying across distributed hospital electronic medical record systems. Through the use of a federated network protocol, SHRINE allows investigators to see limited data about patients meeting their study criteria without compromising patient privacy. This software should greatly enable population-based research, assessment of potential clinical trials cohorts, and hypothesis formation for followup study by combining the EHR assets across the hospital system. In order to obtain the maximum number of cases representing the study population, it is useful to aggregate patient facts across as many sites as possible. Cutting across institutional boundaries necessitates that each hospital IRB remain in control, and that their local authority is recognized for each and every request for patient data. The independence, ownership, and legal responsibilities of hospitals predetermines a decentralized technical approach, such as a federated query over locally controlled databases. The application comes with the SHRINE Core Ontology but it can be used with any ontology, even one that is disease specific. The Core Ontology is designed to enable the widest range of studies possible using facts gathered in the EMR during routine patient care. SHRINE allows multiple ontologies to be used for different research purposes on the same installed systems.

Proper citation: SHRINE (RRID:SCR_006293) Copy   


  • RRID:SCR_027030

    This resource has 1+ mentions.

https://github.com/slowkoni/rfmix

Software tool for local ancestry and admixture inference. Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference.

Proper citation: RFMix (RRID:SCR_027030) Copy   


  • RRID:SCR_016307

    This resource has 1+ mentions.

http://amp.pharm.mssm.edu/X2K/

Software tool to produce inferred networks of transcription factors, proteins, and kinases predicted to regulate the expression of the inputted gene list by combining transcription factor enrichment analysis, protein-protein interaction network expansion, with kinase enrichment analysis. It provides the results as tables and interactive vector graphic figures.

Proper citation: eXpression2Kinases (RRID:SCR_016307) Copy   


  • RRID:SCR_002654

    This resource has 500+ mentions.

http://ccb.jhu.edu/software/glimmerhmm/

A gene finder based on a Generalized Hidden Markov Model (GHMM). Although the gene finder conforms to the overall mathematical framework of a GHMM, additionally it incorporates splice site models adapted from the GeneSplicer program and a decision tree adapted from GlimmerM. It also utilizes Interpolated Markov Models for the coding and noncoding models . Currently, GlimmerHMM's GHMM structure includes introns of each phase, intergenic regions, and four types of exons (initial, internal, final, and single).

Proper citation: GlimmerHMM (RRID:SCR_002654) Copy   


  • RRID:SCR_000923

http://hanalyzer.sourceforge.net/

An open-source data integration system designed to assist biologists in explaining the results observed in genome-scale experiments as well as generating new hypotheses. It combines information extraction techniques, semantic data integration, and reasoning and facilitates network visualization. The Hanalyzer source code and binaries are available for download.

Proper citation: Hanalyzer (RRID:SCR_000923) Copy   


https://github.com/epistasislab/hibachi

Software tool that creates data sets with particular characteristics. Method and open source software for simulating complex biological and biomedical data to aid in comparing and evaluating machine learning methods.

Proper citation: Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (RRID:SCR_017140) Copy   


  • RRID:SCR_004284

    This resource has 10000+ mentions.

http://pubchem.ncbi.nlm.nih.gov/

Collection of information about chemical structures and biological properties of small molecules and siRNA reagents hosted by the National Center for Biotechnology Information (NCBI).

Proper citation: PubChem (RRID:SCR_004284) Copy   


http://ailun.stanford.edu/

Re-annotated gene expression / proteomics data from GEO by relating all probe IDs to Entrez Gene IDs once every three months, enabling you to find data from GEO, and compare them from different platforms and species. Platform Annotations adds the latest annotations to any uploaded probe / gene ID list file. Platform Comparison compares any two platforms to find corresponding probes mapping to the same gene. Cross-species mapping maps platform annotations to other species. Gene Search finds deposited platforms and samples in GEO that contain a list of genes. GPL ID Search finds the GPL ID (GEO platform ID) for your array. You can also download the latest annotations files for all arrays and their comprehensive universal gene identifier table, which relates all types of gene / protein / clone identifiers to Entrez Gene IDs for all species. Note: The database was last updated on 4/30/2011. They have successfully mapped 54932732 individual probes from 385099 GEO samples measuring 3519 GEO platforms across 217 species.

Proper citation: Array Information Library Universal Navigator (RRID:SCR_006967) Copy   


  • RRID:SCR_007830

    This resource has 1+ mentions.

http://senselab.med.yale.edu/ordb/

Database of vertebrate olfactory receptors genes and proteins. It supports sequencing and analysis of these receptors by providing a comprehensive archive with search tools for this expanding family. The database also incorporates a broad range of chemosensory genes and proteins, including the taste papilla receptors (TPRs), vomeronasal organ receptors (VNRs), insect olfaction receptors (IORs), Caenorhabditis elegans chemosensory receptors (CeCRs), and fungal pheromone receptors (FPRs). ORDB currently houses chemosensory receptors for more than 50 organisms. ORDB contains public and private sections which provide tools for investigators to analyze the functions of these very large gene families of G protein-coupled receptors. It also provides links to a local cluster of databases of related information in SenseLab, and to other relevant databases worldwide. The database aims to house all of the known olfactory receptor and chemoreceptor sequences in both nucleotide and amino acid form and serves four main purposes: * It is a repository of olfactory receptor sequences. * It provides tools for sequence analysis. * It supports similarity searches (screens) which reduces duplicate work. * It provides links to other types of receptor information, e.g. 3D models. The database is accessible to two classes of users: * General public www users have full access to all the public sequences, models and resources in the database. * Source laboratories are the laboratories that clone olfactory receptors and submit sequences in the private or public database. They can search any sequence they deposited to the database against any private or public sequence in the database. This user level is suited for laboratories that are actively cloning olfactory receptors.

Proper citation: Olfactory Receptor DataBase (RRID:SCR_007830) Copy   


  • RRID:SCR_007886

    This resource has 100+ mentions.

http://rebase.neb.com/rebase/

Database of information about restriction enzymes and related proteins containing published and unpublished references, recognition and cleavage sites, isoschizomers, commercial availability, methylation sensitivity, crystal, genome, and sequence data. DNA methyltransferases, homing endonucleases, nicking enzymes, specificity subunits and control proteins are also included. Several tools are available including REBsites, BLAST against REBASE, NEBcutter and REBpredictor. Putative DNA methyltransferases and restriction enzymes, as predicted from analysis of genomic sequences, are also listed. REBASE is updated daily and is constantly expanding. Users may submit new enzyme and/or sequence information, recommend references, or send them corrections to existing data. The contents of REBASE may be browsed from the web and selected compilations can be downloaded by ftp (ftp.neb.com). Additionally, monthly updates can be requested via email.,

Proper citation: REBASE (RRID:SCR_007886) Copy   


  • RRID:SCR_006921

    This resource has 10+ mentions.

http://virtualhumanembryo.lsuhsc.edu/

A digital image database of serially sectioned human embryos from the Carnegie Collection originally developed as a collaboration between embryologist Dr. Raymond Gasser at Louisiana State University Health Science Center (LSUHSC) and the Human Developmental Anatomy Center (HDAC) in Washington D.C. The aim of the project is to increase understanding of human embryology and to encourage study of human embryonic development by providing students and researchers with reliable resources for human embryo morphology. The VHE project has several components: * DREM: The Digitally Reproduced Embryonic Morphology (DREM) project, with funding from NICHD, project has produced 27 image databases of labeled serial sections from representative human embryos at each of the 23 Carnegie stages. These databases, together with animations and reconstructions of the embryos are available on DVD and CD. * HEIRLOOM: The HEIRLOOM Collection (Human Embryo Imaging and Reconstruction, Library Of Online Media) was funded by the National Library of Medicine to provide greater access to the DREM databases. NLM provided funding to set up this website and to produce additional 3D-reconstructions and animations that are included on the DREM disks. Original website, http://virtualhumanembryo.lsuhsc.edu/HEIRLOOM/heirloom.htm * EHD: Starting in 2011, The Endowment for Human Development (EHD) will also host the VHE databases. They have made the project accessible to everyone and include a comprehensive cataloging of all the terms used to label the embryos. Their website enables users to browse through the complete VHE atlas of human embryology, http://www.ehd.org/virtual-human-embryo/

Proper citation: Virtual Human Embryo (RRID:SCR_006921) Copy   


  • RRID:SCR_004911

    This resource has 1+ mentions.

http://u-compare.org/

An integrated text mining / natural language processing system based on the Unstructured Information Management Architecture (UIMA) Framework. It allows interoperability of text mining tools and allows the creation of text mining workflows, comparison and visualization of tools. U-Compare can be launched straight from the web or downloaded. As the name implies comparison of components and workflows is a central feature of the system. U-Compare allows sets of components to be run in parallel on the same inputs and then automatically generates statistics for all possible combinations of these components. Once a workflow has been created in U-Compare it can be exported and shared with other users or used with other UIMA compatible tools and so in addition to comparison, U-Compare also functions as a general purpose workflow creation tool. It contains a repository of 50+ biomedical text mining components. These components are included in the U-Compare single-click-to-launch package, ready to use by just drag-and-drop. You can also use this repository independent from the U-Compare system. Link with Taverna It has a link with Taverna for scientific workflows, http://bioinformatics.oxfordjournals.org/content/26/19/2486.abstract, where you can use U-Compare and its workflow from within the Taverna workflow. There are two ways, the U-Compare Taverna plugin and the U-Compare command line mode as a Taverna activity. We have recently integrated it with Peter Murray-Rust''''s OSCAR for Chemistry (see http://www.nactem.ac.uk/cheta/) Web Demo: http://www.nactem.ac.uk/software/cheta/

Proper citation: U-Compare (RRID:SCR_004911) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X