Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 134 results
Snippet view Table view Download 134 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_016033

    This resource has 1+ mentions.

https://github.com/ABCD-STUDY/stroop-task

Software that conducts the Stroop Color Task. Used in the ABCD Study.

Proper citation: stroop-task (RRID:SCR_016033) Copy   


  • RRID:SCR_016911

    This resource has 1+ mentions.

https://github.com/QTIM-Lab/DeepNeuro

Software Python package for neuroimaging data. Framework to design and train neural network architectures. Used in medical imaging community to ensure consistent performance of networks across variable users, institutions, and scanners.

Proper citation: DeepNeuro (RRID:SCR_016911) Copy   


  • RRID:SCR_022976

    This resource has 1+ mentions.

https://github.com/compbiolabucf/omicsGAN

Software generative adversarial network to integrate two omics data and their interaction network to generate one synthetic data corresponding to each omics profile that can result in better phenotype prediction. Used to capture information from interaction network as well as two omics datasets and fuse them to generate synthetic data with better predictive signals.

Proper citation: OmicsGAN (RRID:SCR_022976) Copy   


http://www.duke.edu/web/gpcr-assay/index.html

Describes data from and access to permanent cell lines containing beta-arrestin fluorescent protein biosensors. This assay Bank provides plasmids, cells lines, and resulting data to the NIDA/NIH funded research community in order to better understand and combat addiction.

Proper citation: Addiction Research GPCR Assay Bank (RRID:SCR_002895) Copy   


  • RRID:SCR_004834

    This resource has 10+ mentions.

https://neuinfo.org/mynif/search.php?list=cover&q=*

Service that partners with the community to expose and simultaneously drill down into individual databases and data sets and return relevant content. This type of content, part of the so called hidden Web, is typically not indexed by existing web search engines. Every record links back to the originating site. In order for NIF to directly query these independently maintained databases and datasets, database providers must register their database or dataset with the NIF Data Federation and specify permissions. Databases are concept mapped for ease of sharing and to allow better understanding of the results. Learn more about registering your resource, http://neuinfo.org/nif_components/disco/interoperation.shtm Search results are displayed under the Data Federation tab and are categorized by data type and nervous system level. In this way, users can easily step through the content of multiple resources, all from the same interface. Each federated resource individually displays their query results with links back to the relevant datasets within the host resource. This allows users to take advantage of additional views on the data and tools that are available through the host database. The NIF site provides tutorials for each resource, indicated by the Professor Icon professor icon showing users how to navigate the results page once directed there through the NIF. Additionally, query results may be exported as an Excel document. Note: NIF is not responsible for the availability or content of these external sites, nor does NIF endorse, warrant or guarantee the products, services or information described or offered at these external sites. Integrated Databases: Theses virtual databases created by NIF and other partners combine related data indexed from multiple databases and combine them into one view for easier browsing. * Integrated Animal View * Integrated Brain Gene Expression View * Integrated Disease View * Integrated Nervous System Connectivity View * Integrated Podcasts View * Integrated Software View * Integrated Video View * Integrated Jobs * Integrated Blogs For a listing of the Federated Databases see, http://neuinfo.org/mynif/databaseList.php or refer to the Resources Listed by NIF Data Federation table below.

Proper citation: NIF Data Federation (RRID:SCR_004834) Copy   


https://painseq.shinyapps.io/harmonized_painseq_v1/

Harmonized cell atlases using sc/snRNA-seq data obtained from dorsal root ganglia and trigeminal ganglio mammalian datasets.

Proper citation: Harmonized DRG and TG Reference Atlas (RRID:SCR_025720) Copy   


  • RRID:SCR_025803

    This resource has 100+ mentions.

https://gseapy.readthedocs.io/en/latest/

Software Python package for performing gene set enrichment analysis. Used for characterizing gene expression changes by analysis of large single-cell datasets.

Proper citation: GSEApy (RRID:SCR_025803) Copy   


  • RRID:SCR_027496

    This resource has 1+ mentions.

https://github.com/smorabit/hdWGCNA

Software R package for performing weighted gene co-expression network analysis in high dimensional transcriptomics data such as single-cell RNA-seq or spatial transcriptomics.

Proper citation: hdWGCNA (RRID:SCR_027496) Copy   


http://www.pediatricmri.nih.gov/

Data sets of clinical / behavioral and image data are available for download by qualified researchers from a seven year, multi-site, longitudinal study using magnetic resonance technologies to study brain maturation in healthy, typically-developing infants, children, and adolescents and to correlate brain development with cognitive and behavioral development. The information obtained in this study is expected to provide essential data for understanding the course of normal brain development as a basis for understanding atypical brain development associated with a variety of developmental, neurological, and neuropsychiatric disorders affecting children and adults. This study enrolled over 500 children, ranging from infancy to young adulthood. The goal was to study each participant at least three times over the course of the project at one of six Pediatric Centers across the United States. Brain MR and clinical/behavioral data have been compiled and analyzed at a Data Coordinating Center and Clinical Coordinating Center. Additionally, MR spectroscopy and DTI data are being analyzed. The study was organized around two objectives corresponding to two age ranges at the time of enrollment, each with its own protocols. * Objective 1 enrolled children ages 4 years, 6 months through 18 years (total N = 433). This sample was recruited across the six Pediatric Study Centers using community based sampling to reflect the demographics of the United States in terms of income, race, and ethnicity. The subjects were studied with both imaging and clinical/behavioral measures at two year intervals for three time points. * Objective 2 enrolled newborns, infants, toddlers, and preschoolers from birth through 4 years, 5 months, who were studied three or more times at two Pediatric Study Centers at intervals ranging from three months for the youngest subjects to one year as the children approach the Objective 1 age range. Both imaging and clinical/behavioral measures were collected at each time point. Participant recruitment used community based sampling that included hospital venues (e.g., maternity wards and nurseries, satellite physician offices, and well-child clinics), community organizations (e.g., day-care centers, schools, and churches), and siblings of children participating in other research at the Pediatric Study Centers. At timepoint 1, of those enrolled, 114 children had T1 scans that passed quality control checks. Staged data release plan: The first data release included structural MR images and clinical/behavioral data from the first assessments, Visit 1, for Objective 1. A second data release included structural MRI and clinical/behavioral data from the second visit for Objective 1. A third data release included structural MRI data for both Objective 1 and 2 and all time points, as well as preliminary spectroscopy data. A fourth data release added cortical thickness, gyrification and cortical surface data. Yet to be released are longitudinally registered anatomic MRI data and diffusion tensor data. A collaborative effort among the participating centers and NIH resulted in age-appropriate MR protocols and clinical/behavioral batteries of instruments. A summary of this protocol is available as a Protocol release document. Details of the project, such as study design, rationale, recruitment, instrument battery, MRI acquisition details, and quality controls can be found in the study protocol. Also available are the MRI procedure manual and Clinical/Behavioral procedure manuals for Objective 1 and Objective 2.

Proper citation: NIH MRI Study of Normal Brain Development (RRID:SCR_003394) Copy   


  • RRID:SCR_008062

http://bellsouthpwp.net/c/a/capowski//NTSPublic.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. A hardware and software package with which a scientist could trace the structure of neurons and other neuroscientific features directly from tissue sections or from a stack of their images into a computer. Then it also could edit, merge, filter, display in 3D, and make realistic plots of the structures. The NTS also includes a substantial statistical package that provided many, now standardized, mathematical and statistical summaries that described each neuron and compared one population to another. Additionally, NTS also provided an embryonic electrotonic modeler that simulates and displayes the electrical functioning of a cell. The NTS uses a special purpose graphics display processor called the VDP3 whose output is presented on a very high resolution CRT. During tracing, the VDP3 presents a variable-diameter cursor and other information directly in the microscope and enables tracing at a high spatial resolution and with measurement of process diameters limited only by the microscope''s optics. Control of tracing is done with a 3D joystick that allows easy control of five input variables: X,Y,Z position, cursor diameter, and a numeric tag. Finally, superb 3D interactive displays of completed cells are provided on the VDP3.

Proper citation: Eutectic NTS (RRID:SCR_008062) Copy   


  • RRID:SCR_014539

    This resource has 1+ mentions.

http://knowledge-space.org/

A community encyclopaedia that links brain research concepts with data, models and literature from around the world. It is an open project where users can participate and contribute to the global research community.

Proper citation: KnowledgeSpace (RRID:SCR_014539) Copy   


  • RRID:SCR_005400

    This resource has 1+ mentions.

https://scicrunch.org/scicrunch/about/sources/nlx_144509-1

Interactive portal for finding and submitting biomedical resources. Resources within SciCrunch have assigned RRIDs which are used to cite resources in scientific manuscripts. SciCrunch Registry, formerly NIF Registry, provides resources catalog. Allows to add new resources. Allows edit existing resources after registration. Curators are tasked with identifying and registering resources, examining data, writing configuration files to index and display data and keeping contents current.

Proper citation: SciCrunch Registry (RRID:SCR_005400) Copy   


http://biositemaps.ncbcs.org/rds/search.html

Resource Discovery System is a web-accessible and searchable inventory of biomedical research resources. Powered by the Resource Discovery System (RDS) that includes a standards-based informatics infrastructure * Biositemaps Information Model * Biomedical Resource Ontology Extensions * Web Services distributed web-accessible inventory framework * Biositemap Resource Editor * Resource Discovery System Source code and project documentation to be made available on an open-source basis. Contributing institutions: University of Pittsburgh, University of Michigan, Stanford University, Oregon Health & Science University, University of Texas Houston. Duke University, Emory University, University of California Davis, University of California San Diego, National Institutes of Health, Inventory Resources Working Group Members

Proper citation: Resource Discovery System (RRID:SCR_005554) Copy   


https://scicrunch.org/scicrunch/data/source/nlx_154697-7/search?q=*

Virtual database currently indexing interaction between genes and diseases from Online Mendelian Inheritance in Man (OMIM) and Comparative Toxicogenomics Database (CTD).

Proper citation: Integrated Gene-Disease Interaction (RRID:SCR_006173) Copy   


http://www.cpc.unc.edu/projects/addhealth

Longitudinal study of a nationally representative sample of adolescents in grades 7-12 in the United States during the 1994-95 school year. Public data on about 21,000 people first surveyed in 1994 are available on the first phases of the study, as well as study design specifications. It also includes some parent and biomarker data. The Add Health cohort has been followed into young adulthood with four in-home interviews, the most recent in 2008, when the sample was aged 24-32. Add Health combines longitudinal survey data on respondents social, economic, psychological and physical well-being with contextual data on the family, neighborhood, community, school, friendships, peer groups, and romantic relationships, providing unique opportunities to study how social environments and behaviors in adolescence are linked to health and achievement outcomes in young adulthood. The fourth wave of interviews expanded the collection of biological data in Add Health to understand the social, behavioral, and biological linkages in health trajectories as the Add Health cohort ages through adulthood. The restricted-use contract includes four hours of free consultation with appropriate staff; after that, there''s a fee for help. Researchers can also share information through a listserv devoted to the database.

Proper citation: Add Health (National Longitudinal Study of Adolescent Health) (RRID:SCR_007434) Copy   


  • RRID:SCR_003330

    This resource has 1+ mentions.

https://confluence.crbs.ucsd.edu/display/NIF/DRG

Gene expression data from published journal articles that test hypotheses relevant to neuroscience of addiction and addictive behavior. Data types include effects of particular drug, strain, or knock out on particular gene, in particular anatomical region. Focuses on gene expression data and exposes data from investigations using DNA microarrays, polymerase chain reaction, immunohistochemistry and in-situ hybridizations. Data are available for query through NIF interface.Data submissions are welcome.

Proper citation: Drug Related Gene Database (RRID:SCR_003330) Copy   


  • RRID:SCR_021960

    This resource has 100+ mentions.

http://www.exocarta.org/

Manually curated database of exosomal proteins, RNA and lipids. Web based compendium of exosomal cargo. Database catalogs information from both published and unpublished exosomal studies. Mode of exosomal purification and characterization, biophysical and molecular properties are listed.

Proper citation: ExoCarta (RRID:SCR_021960) Copy   


http://www.ctalearning.com/

A searchable, keyword-indexed bibliography on conditioned taste aversion learning, the avoidance of fluids and foods previously associated with the aversive effects of a variety of drugs. The database includes articles as early as 1951, and papers just published given that the database is ongoing and constantly updated. In the mid 1950''s, John Garcia and his colleagues at the Radiological Defense Laboratory at Hunters Point in San Francisco assessed the effects of ionizing radiation on a myriad of behaviors in the laboratory rat. One of their behavioral findings was that radiated rats avoided consumption of solutions that had been present during radiation, presumably due to the association of the taste of the solution with the aversive effects of the radiation. These results were published in Science and introduced to the literature the phenomenon of conditioned taste aversion learning (or the Garcia Effect). Subsequently, Garcia and his colleagues demonstrated that such learning appeared unique in a number of respects, including the fact that these aversions were acquired often in a single conditioning trial, selectively to gustatory stimuli and even when long delays were imposed between access to the solution and administration of the aversive agent. Together, these unique characteristics appeared to violate the basic tenets of traditional learning theory and along with a number of other behavioral phenomena (e.g., bird song learning, species-specific defense reactions, tonic immobility and schedule-induced polydipsia) introduced the concept of biological constraints on learning that forced a reconceptualization of the role evolution played in the acquisition of behavior (Garcia and Ervin, 1968; Revusky and Garcia, 1970; Rozin and Kalat, 1971). Although the initial investigations into conditioned taste aversion learning focused on these biological and evolutionary issues and their relation to learning, research in this area soon assessed the basic generality of the phenomenon, specifically, under what conditions such learning did or did not occur. With such research, a wide variety of gustatory stimuli were reported as effective conditioned stimuli and an extensive list of drugs with diverse consequences were reported as effective aversion-inducing agents. Aversions were established in a range of strains and species and under many experimental conditions. Research in this area continues to extend the conditions under which such learning occurs and to demonstrate its biological, neurochemical and anatomical substrates. Although the conditions under which aversion learning are reported to occur appear to generalize from the specific conditions under which they were originally reported, a number of factors including sex, age, training and testing procedures, deprivation level and drug history, all affect the rate of its acquisition and its terminal strength (Riley, 1998). In addition to these experimental demonstrations and assessments of generality, research on conditioned taste aversions has expanded to include investigations into its research and clinical applications (Braveman and Bronstein, 1985). In so doing, taste aversion learning has been applied to the characterization and classification of drug toxicity, the demonstration of the stimulus properties of abused drugs, the management of wildlife predation, the assessment of the etiology and treatment of cancer anorexia, the study of the biochemistry and molecular biology of learning, the etiology and control of alcohol use and abuse, the receptor characterization of the motivational effects of drugs, the occurrence of drug interactions, the characterization of drug withdrawal, the determination of taste psychophysics, the treatment of autoimmune diseases and the evaluation of the role of malaise in drug-induced satiety and drug-induced behavioral deficits. The speed with which aversions are acquired and the relative robustness of this preparation have made conditioned taste aversion learning a widely used, highly replicable and sensitive tool. In 1976, we published the first of three bibliographies on conditioned taste aversion learning. In this initial publication (see Riley and Baril, 1976), we listed and annotated 403 papers in this field. Subsequent lists published in 1977 (Riley and Clarke, 1977) and 1985 (Riley and Tuck, 1985) listed 632 and 1373 papers, respectively. Since that time, we have maintained a bibliography on taste aversion learning utilizing a variety of journal and on-line searches as well as benefiting from the generous contribution of preprints, reprints and pdf files from many colleagues. To date, the number of papers on conditioned taste aversion learning is approaching 3000. The present database lists these papers and provides a mechanism for searching the articles according to a number of search functions. Specifically, it was constructed to provide the reader access to these articles via a variety of search terms, including Author(s), Key Words, Date, Article Title and Journal. One can search for single or multiple items within any specific category. Further, one can search a single or combination of categories. The database is constantly being updated, and any feedback and suggestions are welcome and can be sent to CTALearning (at) american.edu.

Proper citation: Conditioned Taste Aversion: An Annotated Bibliography (RRID:SCR_005953) Copy   


  • RRID:SCR_006207

    This resource has 100+ mentions.

http://sparkinsight.org

A clustering and visualization tool that enables the interactive exploration of genome-wide data, with a specialization in epigenomics data. Spark is also available as a service within the Epigenome toolset of the Genboree Workbench. The approach utilizes data clusters as a high-level visual guide and supports interactive inspection of individual regions within each cluster. The cluster view links to gene ontology analysis tools and the detailed region view connects to existing genome browser displays taking advantage of their wealth of annotation and functionality.

Proper citation: Spark (RRID:SCR_006207) Copy   


  • RRID:SCR_006397

    This resource has 100+ mentions.

http://antibodyregistry.org/

Public registry of antibodies with unique identifiers for commercial and non-commercial antibody reagents to give researchers a way to universally identify antibodies used in publications. The registry contains antibody product information organized according to genes, species, reagent types (antibodies, recombinant proteins, ELISA, siRNA, cDNA clones). Data is provided in many formats so that authors of biological papers, text mining tools and funding agencies can quickly and accurately identify the antibody reagents they and their colleagues used. The Antibody Registry allows any user to submit a new antibody or set of antibodies to the registry via a web form, or via a spreadsheet upload.

Proper citation: Antibody Registry (RRID:SCR_006397) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X