Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.biocomputing.it/fidea/
A web server for the functional interpretation of differential expression analysis. It can: * Calculate overrepresentation statistics using KEGG, Interpro, Gene Ontology Molecular Function, Gene Ontology Biological Process, Gene Ontology Cellular Component and GoSlim classifications; * Analyze down-regulated and up-regulated DE genes separately or together as a single set; * Provide interactive graphs and tables that can be modified on the fly according to user defined parameters; the user can set a fold change filter and interactively see the effects on the gene set under examination; * Output publication-ready plot of the graph; * Compare the results of several experiments in any combination.
Proper citation: FIDEA (RRID:SCR_004187) Copy
https://netbio.bgu.ac.il/labwebsite/software/responsenet/
WebServer that identifies high-probability signaling and regulatory paths that connect input data sets. The input includes two weighted lists of condition-related proteins and genes, such as a set of disease-associated proteins and a set of differentially expressed disease genes, and a molecular interaction network (i.e., interactome). The output is a sparse, high-probability interactome sub-network connecting the two sets that is biased toward signaling pathways. This sub-network exposes additional proteins that are potentially involved in the studied condition and their likely modes of action. Computationally, it is formulated as a minimum-cost flow optimization problem that is solved using linear programming.
Proper citation: ResponseNet (RRID:SCR_003176) Copy
http://llama.mshri.on.ca/funcassociate/
A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool
Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy
A web-based tool that provides composite interpretations for microarray data comparing two sample groups as well as lists of genes from diverse sources of biological information. It provides multiple gene set analysis methods for microarray inputs as well as enrichment analyses for lists of genes. It screens redundant composite annotations when generating and prioritizing them. It also incorporates union and subtracted sets as well as intersection sets. Users can upload their gene sets (e.g. predicted miRNA targets) to generate and analyze new composite sets.
Proper citation: ADGO (RRID:SCR_006343) Copy
http://funspec.med.utoronto.ca/
FunSpec is a web-based tool for statistical evaluation of groups of genes and proteins (e.g. co-regulated genes, protein complexes, genetic interactors) with respect to existing annotations, including GO terms. FunSpec (an acronym for Functional Specification) inputs a list of yeast gene names, and outputs a summary of functional classes, cellular localizations, protein complexes, etc. that are enriched in the list. The classes and categories evaluated were downloaded from the MIPS Database and the GO Database . In addition, many published datasets have been compiled to evaluate enrichment against. Hypertext links to the publications are given. The p-values, calculated using the hypergeometric distribution, represent the probability that the intersection of given list with any given functional category occurs by chance. The Bonferroni-correction divides the p-value threshold, that would be deemed significant for an individual test, by the number of tests conducted and thus accounts for spurious significance due to multiple testing over the categories of a database. After the Bonferroni correction, only those categories are displayed for which the chance probability of enrichment is lower than: p-value/#CD where #CD is the number of categories in the selected database. Without the Bonferroni Correction, all categories are displayed for which the same probability of enrichment is lower than: p-value threshold in an individual test Note that many genes are contained in many categories, especially in the MIPS database (which are hierarchical) and that this can create biases for which FunSpec currently makes no compensation. Also the databases are treated as independent from one another, which is really not the case, and each is searched seperately, which may not be optimal for statistical calculations. Nonetheless, we find it useful for sifting through the results of clustering analysis, TAP pulldowns, etc. Platform: Online tool
Proper citation: FunSpec (RRID:SCR_006952) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.