Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 76 out of 76 results
Snippet view Table view Download 76 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006943

    This resource has 100+ mentions.

http://genecodis.cnb.csic.es/

Web-based tool for the ontological analysis of large lists of genes. It can be used to determine biological annotations or combinations of annotations that are significantly associated to a list of genes under study with respect to a reference list. As well as single annotations, this tool allows users to simultaneously evaluate annotations from different sources, for example Biological Process and Cellular Component categories of Gene Ontology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneCodis (RRID:SCR_006943) Copy   


http://genome.ufl.edu/mapper/

A platform composed of three modules: the Database, the Search Engine, and rSNPs, for the computational identification of transcription factor binding sites (TFBSs) in multiple genomes, that combines TRANSFAC and JASPAR data with the search power of profile hidden Markov models (HMMs). The Database contains putative TFBSs found in the upstream sequences of genes from the human, mouse and D.melanogaster genomes. For each gene, they scanned the region from 10,000 base pairs upstream of the transcript start to 50 base pairs downstream of the coding sequence start against all their models. Therefore, the database contains putative binding sites in the gene promoter and in the initial introns and non-coding exons. Information displayed for each putative binding site includes the transcription factor name, its position (absolute on the chromosome, or relative to the gene), the score of the prediction, and the region of the gene the site belongs to. If the selected gene has homologs in any of the other two organisms, the program optionally displays the putative TFBSs in the homologs. The Search Engine allows the identification, visualization and selection of putative TFBSs occurring in the promoter or other regions of a gene from the human, mouse, D.melanogaster, C.elegans or S.cerevisiae genomes. In addition, it allows the user to upload a sequence to query and to build a model by supplying a multiple sequence alignment of binding sites for a transcription factor of interest. rSNPs MAPPER is designed to identify Single Nucleotide Polymorphisms (SNPs) that may have an effect on the presence of one or more TFBSs.

Proper citation: MAPPER - Multi-genome Analysis of Positions and Patterns of Elements of Regulation (RRID:SCR_003077) Copy   


  • RRID:SCR_002924

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/homologene

Automated system for constructing putative homology groups from complete gene sets of wide range of eukaryotic species. Databse that provides system for automatic detection of homologs, including paralogs and orthologs, among annotated genes of sequenced eukaryotic genomes. HomoloGene processing uses proteins from input organisms to compare and sequence homologs, mapping back to corresponding DNA sequences. Reports include homology and phenotype information drawn from Online Mendelian Inheritance in Man, Mouse Genome Informatics, Zebrafish Information Network, Saccharomyces Genome Database and FlyBase.

Proper citation: HomoloGene (RRID:SCR_002924) Copy   


  • RRID:SCR_004187

    This resource has 1+ mentions.

http://www.biocomputing.it/fidea/

A web server for the functional interpretation of differential expression analysis. It can: * Calculate overrepresentation statistics using KEGG, Interpro, Gene Ontology Molecular Function, Gene Ontology Biological Process, Gene Ontology Cellular Component and GoSlim classifications; * Analyze down-regulated and up-regulated DE genes separately or together as a single set; * Provide interactive graphs and tables that can be modified on the fly according to user defined parameters; the user can set a fold change filter and interactively see the effects on the gene set under examination; * Output publication-ready plot of the graph; * Compare the results of several experiments in any combination.

Proper citation: FIDEA (RRID:SCR_004187) Copy   


  • RRID:SCR_017489

    This resource has 10+ mentions.

https://4dgenome.research.chop.edu/

Repository for chromatin interaction data. Records can be queried by genomic regions, gene names, organism, and detection technology. Database is continuously updated by curators. Contributions from scientific community.

Proper citation: 4D Genome (RRID:SCR_017489) Copy   


  • RRID:SCR_002067

    This resource has 1+ mentions.

http://biodev.extra.cea.fr/interoporc/

Automatic prediction tool to infer protein-protein interaction networks, it is applicable for lots of species using orthology and known interactions. The interoPORC method is based on the interolog concept and combines source interaction datasets from public databases as well as clusters of orthologous proteins (PORC) available on Integr8. Users can use this page to ask InteroPorc for all species present in Integr8. Some results are already computed and users can run InteroPorc to investigate any other species. Currently, the following databases are processed and merged (with datetime of the last available public release for each database used): IntAct, MINT, DIP, and Integr8.

Proper citation: InteroPorc (RRID:SCR_002067) Copy   


  • RRID:SCR_002168

    This resource has 10+ mentions.

http://ccdb.ucsd.edu

THIS RESOURCE IS NO LONGER IN SERVICE, documented June 5, 2017. It has been merged with Cell Image Library. Database for sharing and mining cellular and subcellular high resolution 2D, 3D and 4D data from light and electron microscopy, including correlated imaging that makes unique and valuable datasets available to the scientific community for visualization, reuse and reanalysis. Techniques range from wide field mosaics taken with multiphoton microscopy to 3D reconstructions of cellular ultrastructure using electron tomography. Contributions from the community are welcome. The CCDB was designed around the process of reconstruction from 2D micrographs, capturing key steps in the process from experiment to analysis. The CCDB refers to the set of images taken from microscope the as the Microscopy Product. The microscopy product refers to a set of related 2D images taken by light (epifluorescence, transmitted light, confocal or multiphoton) or electron microscopy (conventional or high voltage transmission electron microscopy). These image sets may comprise a tilt series, optical section series, through focus series, serial sections, mosaics, time series or a set of survey sections taken in a single microscopy session that are not related in any systematic way. A given set of data may be more than one product, for example, it is possible for a set of images to be both a mosaic and a tilt series. The Microscopy Product ID serves as the accession number for the CCDB. All microscopy products must belong to a project and be stored along with key specimen preparation details. Each project receives a unique Project ID that groups together related microscopy products. Many of the datasets come from published literature, but publication is not a prerequisite for inclusion in the CCDB. Any datasets that are of high quality and interest to the scientific community can be included in the CCDB.

Proper citation: Cell Centered Database (RRID:SCR_002168) Copy   


http://akt.ucsf.edu/EGAN/

Exploratory Gene Association Networks (EGAN) is a software tool that allows a bench biologist to visualize and interpret the results of high-throughput exploratory assays in an interactive hypergraph of genes, relationships (protein-protein interactions, literature co-occurrence, etc.) and meta-data (annotation, signaling pathways, etc.). EGAN provides comprehensive, automated calculation of meta-data coincidence (over-representation, enrichment) for user- and assay-defined gene lists, and provides direct links to web resources and literature (NCBI Entrez Gene, PubMed, KEGG, Gene Ontology, iHOP, Google, etc.). EGAN functions as a module for exploratory investigation of analysis results from multiple high-throughput assay technologies, including but not limited to: * Transcriptomics via expression microarrays or RNA-Seq * Genomics via SNP GWAS or array CGH * Proteomics via MS/MS peptide identifications * Epigenomics via DNA methylation, ChIP-on-Chip or ChIP-Seq * In-silico analysis of sequences or literature EGAN has been built using Cytoscape libraries for graph visualization and layout, and is comparable to DAVID, GSEA, Ingenuity IPA and Ariadne Pathway Studio. There are pre-collated EGAN networks available for human (Homo sapiens), mouse (Mus musculus), rat (Rattus norvegicus), chicken (Gallus gallus), zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), nematode (Caenorhabditis elegans), mouse-ear cress (Arabidopsis thaliana), rice (Oryza sativa) and brewer's yeast (Saccharomyces cerevisiae). There is now an EGAN module available for GenePattern (human-only). Platform: Windows compatible, Mac OS X compatible, Linux compatible

Proper citation: EGAN: Exploratory Gene Association Networks (RRID:SCR_008856) Copy   


  • RRID:SCR_015632

https://github.com/kristinbranson/BABAM

Graphical user interface for exploring hypotheses of correlations between neural activity in regions of the brain and behavior for Drosophila melanogaster. These correlation hypotheses are the result of our thermogenetic neural activation screen from the Janelia GAL4 collection.

Proper citation: BABAM (RRID:SCR_015632) Copy   


http://braintrap.inf.ed.ac.uk/braintrap/

This database contains information on protein expression in the Drosophila melanogaster brain. It consists of a collection of 3D confocal datasets taken from EYFP expressing protein trap Drosophila lines from the Cambridge Protein Trap project. Currently there are 884 brain scans from 535 protein trap lines in the database. Drosophila protein trap strains were generated by the St Johnston Lab and the Russell Lab at the University of Cambridge, UK. The piggyBac insertion method was used to insert constructs containing splice acceptor and donor sites, StrepII and FLAG affinity purification tags, and an EYFP exon (Venus). Brain images were acquired by Seymour Knowles-Barley, in the Armstrong Lab at the University of Edinburgh. Whole brain mounts were imaged by confocal microscopy, with a background immunohistochemical label added to aid the identification of brain structures. Additional immunohistochemical labeling of the EYFP protein using an anti-GFP antibody was also used in most cases. The trapped protein signal (EYFP / anti-GFP), background signal (NC82 label), and the merged signal can be viewed on the website by using the corresponding channel buttons. In all images the trapped protein / EYFP signal appears green and the background / NC82 channel appears magenta. Original .lsm image files are also available for download.

Proper citation: BrainTrap: Fly Brain Protein Trap Database (RRID:SCR_003398) Copy   


  • RRID:SCR_003219

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/dbvar/

Structural variation database designed to store data on variant DNA > / = 1 bp in size from all organisms. Associations of defined variants with phenotype information is also provided. Users can browse data containing number of variant cells from each study, and filter studies by organism, study type, method and genomic variant. Organisms include human, mouse, cattle and several additional animals.

Proper citation: dbVar (RRID:SCR_003219) Copy   


  • RRID:SCR_006206

    This resource has 100+ mentions.

http://modencode.org/

A comprehensive encyclopedia of genomic functional elements in the model organisms C. elegans and D. melanogaster. modENCODE is run as a Research Network and the consortium is formed by 11 primary projects, divided between worm and fly, spanning the domains of gene structure, mRNA and ncRNA expression profiling, transcription factor binding sites, histone modifications and replacement, chromatin structure, DNA replication initiation and timing, and copy number variation. The raw and interpreted data from this project is vetted by a data coordinating center (DCC) to ensure consistency and completeness. The entire modENCODE data corpus is now available on the Amazon Web Services EC2 cloud. What this means is that virtual machines and virtual compute clusters that you run within the EC2 cloud can mount the modENCODE data set in whole or in part. Your software can run analyses against the data files directly without experiencing the long waits and logistics associated with copying the datasets over to your local hardware. You may also view the data using GBrowse, Dataset Search, or download the data via FTP, as well as download pre-release datasets.

Proper citation: modENCODE (RRID:SCR_006206) Copy   


http://scicrunch.org/resources

Portal providing identifiers for Antibodies, Model Organisms, and Tools (software, databases, services) created in support of the Resource Identification Initiative, which aims to promote research resource identification, discovery, and reuse. The portal offers a central location for obtaining and exploring Research Resource Identifiers (RRIDs) - persistent and unique identifiers for referencing a research resource. A critical goal of the RII is the widespread adoption of RRIDs to cite resources in the biomedical literature and other places that reference their generation or use. RRIDs use established community identifiers where they exist, and are cross-referenced in their system where more than one identifier exists for a single resource.

Proper citation: Resource Identification Portal (RRID:SCR_004098) Copy   


http://www.ihop-net.org/UniPub/iHOP/

Information system that provides a network of concurring genes and proteins extends through the scientific literature touching on phenotypes, pathologies and gene function. It provides this network as a natural way of accessing millions of PubMed abstracts. By using genes and proteins as hyperlinks between sentences and abstracts, the information in PubMed can be converted into one navigable resource, bringing all advantages of the internet to scientific literature research. Moreover, this literature network can be superimposed on experimental interaction data (e.g., yeast-two hybrid data from Drosophila melanogaster and Caenorhabditis elegans) to make possible a simultaneous analysis of new and existing knowledge. The network contains half a million sentences and 30,000 different genes from humans, mice, D. melanogaster, C. elegans, zebrafish, Arabidopsis thaliana, yeast and Escherichia coli.

Proper citation: Information Hyperlinked Over Proteins (RRID:SCR_004829) Copy   


http://llama.mshri.on.ca/funcassociate/

A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool

Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy   


  • RRID:SCR_006343

    This resource has 1+ mentions.

http://www.btool.org/ADGO2

A web-based tool that provides composite interpretations for microarray data comparing two sample groups as well as lists of genes from diverse sources of biological information. It provides multiple gene set analysis methods for microarray inputs as well as enrichment analyses for lists of genes. It screens redundant composite annotations when generating and prioritizing them. It also incorporates union and subtracted sets as well as intersection sets. Users can upload their gene sets (e.g. predicted miRNA targets) to generate and analyze new composite sets.

Proper citation: ADGO (RRID:SCR_006343) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X