Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Catalog of published genome-wide association studies. Genome-wide set of genetic variants in different individuals to see if any variant is associated with trait and disease. Database of genome-wide association study (GWAS) publications including only those attempting to assay single nucleotide polymorphisms (SNPs). Publications are organized from most to least recent date of publication. Studies are identified through weekly PubMed literature searches, daily NIH-distributed compilations of news and media reports, and occasional comparisons with an existing database of GWAS literature (HuGE Navigator). Works with HANCESTRO ancestry representation.
Proper citation: GWAS: Catalog of Published Genome-Wide Association Studies (RRID:SCR_012745) Copy
Ratings or validation data are available for this resource
http://ccb.jhu.edu/software/tophat/index.shtml
Software tool for fast and high throughput alignment of shotgun cDNA sequencing reads generated by transcriptomics technologies. Fast splice junction mapper for RNA-Seq reads. Aligns RNA-Seq reads to mammalian-sized genomes using ultra high-throughput short read aligner Bowtie, and then analyzes mapping results to identify splice junctions between exons.TopHat2 is accurate alignment of transcriptomes in presence of insertions, deletions and gene fusions.
Proper citation: TopHat (RRID:SCR_013035) Copy
Database of traceable, standardized, annotated gene signatures which have been manually curated from publications that are indexed in PubMed. The Advanced Gene Search will perform a One-tailed Fisher Exact Test (which is equivalent to Hypergeometric Distribution) to test if your gene list is over-represented in any gene signature in GeneSigDB. Gene expression studies typically result in a list of genes (gene signature) which reflect the many biological pathways that are concurrently active. We have created a Gene Signature Data Base (GeneSigDB) of published gene expression signatures or gene sets which we have manually extracted from published literature. GeneSigDB was creating following a thorough search of PubMed using defined set of cancer gene signature search terms. We would be delighted to accept or update your gene signature. Please fill out the form as best you can. We will contact you when we get it and will be happy to work with you to ensure we accurately report your signature. GeneSigDB is capable of providing its functionality through a Java RESTful web service.
Proper citation: GeneSigDB (RRID:SCR_013275) Copy
An international consortium whose goals are to enable faster comparative studies and develop tools that make analysis accessible to the wider scientific community. InterMOD is an open source data warehouse where users can query and input their own data, access analysis tools, and create their own InterMine. Five core mines make make up InterMOD: RGD, SGD ZFIN, MGI, and WormBase.
Proper citation: InterMOD (RRID:SCR_013808) Copy
http://www.informatics.jax.org/mgihome/GO/project.shtml
This resource is part of the Gene Ontology Consortium which seeks to provide controlled vocabularies for the description of the molecular function, biological process, and cellular component of gene products. These terms are to be used as attributes of gene products by collaborating databases, facilitating uniform queries across them. GO team members at MGI participate in ontology development, outreach, and functional curation of mouse gene products. The GO vocabularies have a hierarchical structure that permits a range of detail from high-level, broadly descriptive terms to very low level, highly specific terms. This broad range is useful both in annotating genes and in searching for gene information using these terms as search criteria. GO terms are defined, allowing all databases to use the terms consistently and properly. GO annotations in the databases additionally include the publication reference which allowed the association to be made and an evidence statement citing how the association was determined.
Proper citation: Mouse Genome Informatics: The Gene Ontology Project (RRID:SCR_006447) Copy
Model organism database for the social amoeba Dictyostelium discoideum that provides the biomedical research community with integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ''''reference genome'''' in the Amoebozoa clade. They highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase. The Dicty Stock Center currently holds over 1500 strains targeting over 930 different genes. There are over 100 different distinct amoebozoan species. In addition, the collection contains nearly 600 plasmids and other materials such as antibodies and cDNA libraries. The strain collection includes: * strain catalog * natural isolates * MNNG chemical mutants * tester strains for parasexual genetics * auxotroph strains * null mutants * GFP-labeled strains for cell biology * plasmid catalog The Dicty Stock Center can accept Dictyostelium strains, plasmids, and other materials relevant for research using Dictyostelium such as antibodies and cDNA or genomic libraries.
Proper citation: Dictyostelium discoideum genome database (RRID:SCR_006643) Copy
The BBOP, located at the Lawrence Berkeley National Labs, is a diverse group of scientific researchers and software engineers dedicated to developing tools and applying computational technologies to solve biological problems. Members of the group contribute to a number of projects, including the Gene Ontology, OBO Foundry, the Phenotypic Quality Ontology, modENCODE, and the Generic Model Organism Database Project. Our group is focused on the development, use, and integration of ontolgies into biological data analysis. Software written or maintained by BBOP is accessible through the site.
Proper citation: Berkeley Bioinformatics Open-Source Projects (RRID:SCR_006704) Copy
http://compbio.med.harvard.edu/antibodies/
The aim of this site is to collect and to share experimental results on antibodies that would otherwise remain in laboratories, thus aiding researchers in selection and validation of antibodies.
Proper citation: Antibody Validation Database (RRID:SCR_011996) Copy
http://rarediseases.info.nih.gov/GARD/Default.aspx
Genetic and Rare Diseases Information Center (GARD) is a collaborative effort of two agencies of the National Institutes of Health, The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) to help people find useful information about genetic conditions and rare diseases. GARD provides timely access to experienced information specialists who can furnish current and accurate information about genetic and rare diseases. So far, GARD has responded to 27,635 inquiries on about 7,147 rare and genetic diseases. Requests come not only from patients and their families, but also from physicians, nurses and other health-care professionals. GARD also has proved useful to genetic counselors, occupational and physical therapists, social workers, and teachers who work with people with a genetic or rare disease. Even scientists who are studying a genetic or rare disease and who need information for their research have contacted GARD, as have people who are taking part in a clinical study. Community leaders looking to help people find resources for those with genetic or rare diseases and advocacy groups who want up-to-date disease information for their members have contacted GARD. And members of the media who are writing stories about genetic or rare diseases have found the information GARD has on hand useful, accurate and complete. GARD has information on: :- What is known about a genetic or rare disease. :- What research studies are being conducted. :- What genetic testing and genetic services are available. :- Which advocacy groups to contact for a specific genetic or rare disease. :- What has been written recently about a genetic or rare disease in medical journals. GARD information specialists get their information from: :- NIH resources. :- Medical textbooks. :- Journal articles. :- Web sites. :- Advocacy groups, and their literature and services. :- Medical databases.
Proper citation: Genetic and Rare Diseases Information Center (RRID:SCR_008695) Copy
http://interactome.baderlab.org/
Project portal for the Human Reference Protein Interactome Project, which aims generate a first reference map of the human protein-protein interactome network by identifying binary protein-protein interactions (PPIs). It achieves this by systematically interrogating all pairwise combinations of predicted human protein-coding genes using proteome-scale technologies.
Proper citation: Human Reference Protein Interactome Project (RRID:SCR_015670) Copy
http://compbio.mit.edu/ChromHMM/
Software tool for chromatin state discovery and characterization. Used for chromatin state discovery and genome annotation of non coding genome using epigenomic information across one or multiple cell types. Combines multiple genome wide epigenomic maps, and uses combinatorial and spatial mark patterns to infer complete annotation for each cell type. Provides automated enrichment analysis of resulting annotations.
Proper citation: ChromHMM (RRID:SCR_018141) Copy
https://github.com/bcgsc/NanoSim
Software tool as Nanopore sequence read simulator based on statistical characterization. Oxford Nanopore Technology sequence simulator written in Python and R. Benefits development of scalable next generation sequencing technologies for long nanopore reads, including genome assembly, mutation detection, and metagenomic analysis software.
Proper citation: NanoSim (RRID:SCR_018243) Copy
https://github.com/lh3/minimap2
Software tool as pairwise alignment for nucleotide sequences. Alignment program to map DNA or long mRNA sequences against large reference database. Versatile pairwise aligner for genomic and spliced nucleotide sequences.
Proper citation: Minimap2 (RRID:SCR_018550) Copy
https://cole-trapnell-lab.github.io/monocle3/
Software analysis toolkit for single cell RNA-seq. Used for single cell RNA-Seq experiments. Unsupervised algorithm that increases temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points.
Proper citation: Monocle3 (RRID:SCR_018685) Copy
https://hartleys.github.io/QoRTs/
Software package for quality control and data processing of RNA-Seq experiments. Software portable multifunction toolkit for assisting in analysis, quality control, and data management of RNA-Seq and DNA-Seq datasets. Used for detection and identification of errors, biases, and artifacts produced by high throughput sequencing technology. Can be used in operating system that supports Java and R.
Proper citation: QoRTs (RRID:SCR_018665) Copy
Web service for querying or retrieving gene annotation data.
Proper citation: MyGene.info (RRID:SCR_018660) Copy
http://tools.dice-database.org/GOnet/)
Web tool for interactive Gene Ontology analysis of any biological data sources resulting in gene or protein lists.
Proper citation: GOnet (RRID:SCR_018977) Copy
https://github.com/ruanjue/wtdbg2.git
Software tool as de novo sequence assembler for long noisy reads produced by PacBio or Oxford Nanopore Technologies. It assembles raw reads without error correction and then builds consensus from intermediate assembly output. Desiged to assemble huge genomes in very limited time.
Proper citation: WTDBG (RRID:SCR_017225) Copy
https://github.com/philres/ngmlr
Software tool as long read mapper designed to align PacBio or Oxford Nanopore reads to reference genome and optimized for structural variation detection.
Proper citation: Ngmlr (RRID:SCR_017620) Copy
https://github.com/chhylp123/hifiasm
Software tool as haplotype resolved de novo assembler for PacBio Hifi reads. Can assemble human genome in several hours.Introduces new graph binning algorithm and achieves haplotype resolved assembly given trio data. Takes advantage of long high fidelity sequence reads to represent haplotype information in phased assembly graph. Preserves contiguity of all haplotypes.
Proper citation: Hifiasm (RRID:SCR_021069) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.