Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Supplier and researcher of wild C. elegans strains. CeNDR supplies organisms, analyzes whole-genome sequences, and facilitates genetic mappings to aid researchers in gene discovery.
Proper citation: Caenorhabditis elegans Natural Diversity Resource (CeNDR) (RRID:SCR_014958) Copy
Database of microRNA target predictions and expression profiles. Target predictions are based on a development of the miRanda algorithm which incorporates current biological knowledge on target rules and on the use of an up-to-date compendium of mammalian microRNAs. MicroRNA expression profiles are derived from a comprehensive sequencing project of a large set of mammalian tissues and cell lines of normal and disease origin. This website enables users to explore: * The set of genes that are potentially regulated by a particular microRNA. * The implied cooperativity of multiple microRNAs on a particular mRNA. * MicroRNA expression profiles in various mammalian tissues. The web resource provides users with functional information about the growing number of microRNAs and their interaction with target genes in many species and facilitates novel discoveries in microRNA gene regulation. The microRNA Target Detection Software, miRanda, is an algorithm for finding genomic targets for microRNAs. This algorithm has been written in C and is available as an open-source method under the GPL., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: microRNA.org (RRID:SCR_006997) Copy
Center that acquires, maintains, and distributes genetic stocks and information about stocks of the small free-living nematode Caenorhabditis elegans for use by investigators initiating or continuing research on this genetic model organism. A searchable strain database, general information about C. elegans, and links to key Web sites of use to scientists, including WormBase, WormAtlas, and WormBook are available.
Proper citation: Caenorhabditis Genetics Center (RRID:SCR_007341) Copy
http://senselab.med.yale.edu/ordb/
Database of vertebrate olfactory receptors genes and proteins. It supports sequencing and analysis of these receptors by providing a comprehensive archive with search tools for this expanding family. The database also incorporates a broad range of chemosensory genes and proteins, including the taste papilla receptors (TPRs), vomeronasal organ receptors (VNRs), insect olfaction receptors (IORs), Caenorhabditis elegans chemosensory receptors (CeCRs), and fungal pheromone receptors (FPRs). ORDB currently houses chemosensory receptors for more than 50 organisms. ORDB contains public and private sections which provide tools for investigators to analyze the functions of these very large gene families of G protein-coupled receptors. It also provides links to a local cluster of databases of related information in SenseLab, and to other relevant databases worldwide. The database aims to house all of the known olfactory receptor and chemoreceptor sequences in both nucleotide and amino acid form and serves four main purposes: * It is a repository of olfactory receptor sequences. * It provides tools for sequence analysis. * It supports similarity searches (screens) which reduces duplicate work. * It provides links to other types of receptor information, e.g. 3D models. The database is accessible to two classes of users: * General public www users have full access to all the public sequences, models and resources in the database. * Source laboratories are the laboratories that clone olfactory receptors and submit sequences in the private or public database. They can search any sequence they deposited to the database against any private or public sequence in the database. This user level is suited for laboratories that are actively cloning olfactory receptors.
Proper citation: Olfactory Receptor DataBase (RRID:SCR_007830) Copy
http://organelledb.lsi.umich.edu/
Database of organelle proteins, and subcellular structures / complexes from compiled protein localization data from organisms spanning the eukaryotic kingdom. All data may be downloaded as a tab-delimited text file and new localization data (and localization images, etc) for any organism relevant to the data sets currently contained in Organelle DB is welcomed. The data sets in Organelle DB encompass 138 organisms with emphasis on the major model systems: S. cerevisiae, A. thaliana, D. melanogaster, C. elegans, M. musculus, and human proteins as well. In particular, Organelle DB is a central repository of yeast protein localization data, incorporating results from both previous and current (ongoing) large-scale studies of protein localization in Saccharomyces cerevisiae. In addition, we have manually curated several recent subcellular proteomic studies for incorporation in Organelle DB. In total, Organelle DB is a singular resource consolidating our knowledge of the protein composition of eukaryotic organelles and subcellular structures. When available, we have included terms from the Gene Ontologies: the cellular component, molecular function, and biological process fields are discussed more fully in GO. Additionally, when available, we have included fluorescent micrographs (principally of yeast cells) visualizing the described protein localization. Organelle View is a visualization tool for yeast protein localization. It is a visually engaging way for high school and undergraduate students to learn about genetics or for visually-inclined researchers to explore Organelle DB. By revealing the data through a colorful, dimensional model, we believe that different kinds of information will come to light.
Proper citation: Organelle DB (RRID:SCR_007837) Copy
Data resource that includes a large collection of genome-wide ChIP-Seq experiments performed on transcription factors (TFs), histone modifications, RNA polymerases and others. Enriched peak regions from the ChIP-Seq experiments are crossed with the genomic coordinates of a set of input genes, to identify which of the experiments present a statistically significant number of peaks within the input genes' loci. The input can be a cluster of co-expressed genes, or any other set of genes sharing a common regulatory profile. Users can thus single out which TFs are likely to be common regulators of the genes, and their respective correlations. Also, by examining results on promoter activation, transcription, histone modifications, polymerase binding and so on, users can investigate the effect of the TFs (activation or repression of transcription) as well as of the cell or tissue specificity of the genes' regulation and expression.
Proper citation: Cscan (RRID:SCR_006756) Copy
An integrated resource to analyze signaling pathway cross-talks, transcription factors, miRNAs and regulatory enzymes. The multi-layered database structure is made up of signaling pathways, their pathway regulators (e.g., scaffold and endocytotic proteins) and modifier enzymes (e.g., phosphatases, ubiquitin ligases), as well as transcriptional and post-transcriptional regulators of all of these components. The website allows the interactive exploration of how each signaling protein is regulated. Features * experimental data not only from humans but from two invertebrate model organisms, C. elegans and D. melanogaster; * combines manual curation with large-scale datasets; * provides confidence scores for each interaction; * operates a customizable download page with multiple file formats (e.g., BioPAX, Cytoscape, SBML).
Proper citation: SignaLink (RRID:SCR_003569) Copy
http://www.ihop-net.org/UniPub/iHOP/
Information system that provides a network of concurring genes and proteins extends through the scientific literature touching on phenotypes, pathologies and gene function. It provides this network as a natural way of accessing millions of PubMed abstracts. By using genes and proteins as hyperlinks between sentences and abstracts, the information in PubMed can be converted into one navigable resource, bringing all advantages of the internet to scientific literature research. Moreover, this literature network can be superimposed on experimental interaction data (e.g., yeast-two hybrid data from Drosophila melanogaster and Caenorhabditis elegans) to make possible a simultaneous analysis of new and existing knowledge. The network contains half a million sentences and 30,000 different genes from humans, mice, D. melanogaster, C. elegans, zebrafish, Arabidopsis thaliana, yeast and Escherichia coli.
Proper citation: Information Hyperlinked Over Proteins (RRID:SCR_004829) Copy
http://146.189.76.171/query.php
Tool to search for targets of conserved microRNAs in Caenorhabditis elegans by weighting RISC-immunoprecipitation-enriched parameters.
Proper citation: mirWIP (RRID:SCR_005055) Copy
A database of human molecular interaction networks that integrates human protein-protein and transcriptional regulatory interactions from 15 distinct resources and aims to give direct and easy access to the integrated data set and to enable users to perform network-based investigations. The database includes tools (i) to search for molecular interaction partners of query genes or proteins in the integrated dataset, (ii) to inspect the origin, evidence and functional annotation of retrieved proteins and interactions, (iii) to visualize and adjust the resulting interaction network, (iv) to filter interactions based on method of derivation, evidence and type of experiment as well as based on gene expression data or gene lists and (v) to analyze the functional composition of interaction networks.
Proper citation: Unified Human Interactome (RRID:SCR_005805) Copy
http://llama.mshri.on.ca/funcassociate/
A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool
Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy
A web-based tool that provides composite interpretations for microarray data comparing two sample groups as well as lists of genes from diverse sources of biological information. It provides multiple gene set analysis methods for microarray inputs as well as enrichment analyses for lists of genes. It screens redundant composite annotations when generating and prioritizing them. It also incorporates union and subtracted sets as well as intersection sets. Users can upload their gene sets (e.g. predicted miRNA targets) to generate and analyze new composite sets.
Proper citation: ADGO (RRID:SCR_006343) Copy
A gene and protein interactions database designed specifically for the model organism Drosophila including protein-protein, transcription factor-gene, microRNA-gene, and genetic interactions. For advanced searches and dynamic graphing capabilities the IM Browser and a DroID Cytoscape plugin are available.
Proper citation: DroID - Drosophila Interactions Database (RRID:SCR_006634) Copy
Web-based microarray data analysis and visualization system powered by CRC, or Chinese Restaurant cluster, a Dirichlet process model-based clustering algorithm recently developed by Dr. Steve Qin. It also incorporates several gene expression analysis programs from Bioconductor, including GOStats, genefilter, and Heatplus. CRCView also installs from the Bioconductor system 78 annotation libraries of microarray chips for human (31), mouse (24), rat (14), zebrafish (1), chicken (1), Drosophila (3), Arabidopsis (2), Caenorhabditis elegans (1), and Xenopus Laevis (1). CRCView allows flexible input data format, automated model-based CRC clustering analysis, rich graphical illustration, and integrated Gene Ontology (GO)-based gene enrichment for efficient annotation and interpretation of clustering results. CRC has the following features comparing to other clustering tools: 1) able to infer number of clusters, 2) able to cluster genes displaying time-shifted and/or inverted correlations, 3) able to tolerate missing genotype data and 4) provide confidence measure for clusters generated. You need to register for an account in the system to store your data and analyses. The data and results can be visited again anytime you log in.
Proper citation: CRCView (RRID:SCR_007092) Copy
https://omictools.com/ecgene-tool
Database of functional annotation for alternatively spliced genes. It uses a gene-modeling algorithm that combines the genome-based expressed sequence tag (EST) clustering and graph-theoretic transcript assembly procedures. It contains genome, mRNA, and EST sequence data, as well as a genome browser application. Organisms included in the database are human, dog, chicken, fruit fly, mouse, rhesus, rat, worm, and zebrafish. Annotation is provided for the whole transcriptome, not just the alternatively spliced genes. Several viewers and applications are provided that are useful for the analysis of the transcript structure and gene expression. The summary viewer shows the gene summary and the essence of other annotation programs. The genome browser and the transcript viewer are available for comparing the gene structure of splice variants. Changes in the functional domains by alternative splicing can be seen at a glance in the transcript viewer. Two unique ways of analyzing gene expression is also provided. The SAGE tags deduced from the assembled transcripts are used to delineate quantitative expression patterns from SAGE libraries available publicly. The cDNA libraries of EST sequences in each cluster are used to infer qualitative expression patterns.
Proper citation: ECgene: Gene Modeling with Alternative Splicing (RRID:SCR_007634) Copy
http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/publications/GeneMerge.html
THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Web-based and standalone application that returns a wide range of functional genomic data for a given set of study genes and provides rank scores for over-representation of particular functions or categories in the data. It uses the hypergeometric test statistic which returns statistically correct results for samples of all sizes and is the #2 fastest GO tool available (Khatri and Draghici, 2005). GeneMerge can be used with any discrete, locus-based annotation data, including, literature references, genetic interactions, mutant phenotypes as well as traditional Gene Ontology queries. GeneMerge is particularly useful for the analysis of microarray data and other large biological datasets. The big advantage of GeneMerge over other similar programs is that you are not limited to analyzing your data from the perspective of a pre-packaged set of gene-association data. You can download or create gene-association files to analyze your data from an unlimited number of perspectives. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GeneMerge (RRID:SCR_005744) Copy
Web-based tool for the ontological analysis of large lists of genes. It can be used to determine biological annotations or combinations of annotations that are significantly associated to a list of genes under study with respect to a reference list. As well as single annotations, this tool allows users to simultaneously evaluate annotations from different sources, for example Biological Process and Cellular Component categories of Gene Ontology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GeneCodis (RRID:SCR_006943) Copy
http://www.cbs.dtu.dk/services/HMMgene/
Data analysis service for prediction of vertebrate and C. elegans genes.
Proper citation: HMMgene (RRID:SCR_011933) Copy
http://gpcr.biocomp.unibo.it/bacello/
A predictor for the subcellular localization of proteins in eukaryotes that is based on a decision tree of several support vector machines (SVMs). It classifies up to four localizations for Fungi and Metazoan proteins and five localizations for Plant ones. BaCelLo's predictions are balanced among different classes and all the localizations are considered as equiprobable.
Proper citation: BaCelLo (RRID:SCR_011965) Copy
https://github.com/cyaguesa/SL-quant/
Source code for a bash pipeline that quantifies splice-leader (SL) trans-splicing events by genes in the nematode C. elegans. It is designed to work downstream of read mapping and takes the reads left unmapped as primary input.
Proper citation: SL-quant (RRID:SCR_016205) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.