Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 94 results
Snippet view Table view Download 94 Result(s)
Click the to add this resource to a Collection

http://www.droidb.org

A gene and protein interactions database designed specifically for the model organism Drosophila including protein-protein, transcription factor-gene, microRNA-gene, and genetic interactions. For advanced searches and dynamic graphing capabilities the IM Browser and a DroID Cytoscape plugin are available.

Proper citation: DroID - Drosophila Interactions Database (RRID:SCR_006634) Copy   


https://omictools.com/ecgene-tool

Database of functional annotation for alternatively spliced genes. It uses a gene-modeling algorithm that combines the genome-based expressed sequence tag (EST) clustering and graph-theoretic transcript assembly procedures. It contains genome, mRNA, and EST sequence data, as well as a genome browser application. Organisms included in the database are human, dog, chicken, fruit fly, mouse, rhesus, rat, worm, and zebrafish. Annotation is provided for the whole transcriptome, not just the alternatively spliced genes. Several viewers and applications are provided that are useful for the analysis of the transcript structure and gene expression. The summary viewer shows the gene summary and the essence of other annotation programs. The genome browser and the transcript viewer are available for comparing the gene structure of splice variants. Changes in the functional domains by alternative splicing can be seen at a glance in the transcript viewer. Two unique ways of analyzing gene expression is also provided. The SAGE tags deduced from the assembled transcripts are used to delineate quantitative expression patterns from SAGE libraries available publicly. The cDNA libraries of EST sequences in each cluster are used to infer qualitative expression patterns.

Proper citation: ECgene: Gene Modeling with Alternative Splicing (RRID:SCR_007634) Copy   


  • RRID:SCR_010853

    This resource has 1000+ mentions.

http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html

Catalogs of predicted microRNA targets in worm (based on ce6 genome assembly), fly (dm3), mouse (mm9) and human (hg18). We follow standard seed parameter settings and consider seeds of length 6-8 bases, beginning at position 2 of the microRNA. No mismatches or loops are allowed, but a single G:U wobble is allowed in 7- or 8-mers. In genes missing a 3' UTR annotation, 500 bp (fly), 800 bp (human and mouse) or 300 bp (worm) downstream of the annotated end of the coding sequence were used as the predicted UTR. For each organism, a catalog with zero flank and with a flank of 3 and 15 bases upstream and downstream.

Proper citation: PITA (RRID:SCR_010853) Copy   


  • RRID:SCR_001644

    This resource has 1+ mentions.

https://www.cmtk.org/

A Python-based open source toolkit for magnetic resonance connectome mapping, data management, sharing, visualization and analysis. The toolkit includes the connectome mapper (a full DMRI processing pipeline), a new file format for multi modal data and metadata, and a visualization application.

Proper citation: Connectome Mapping Toolkit (RRID:SCR_001644) Copy   


  • RRID:SCR_002067

    This resource has 1+ mentions.

http://biodev.extra.cea.fr/interoporc/

Automatic prediction tool to infer protein-protein interaction networks, it is applicable for lots of species using orthology and known interactions. The interoPORC method is based on the interolog concept and combines source interaction datasets from public databases as well as clusters of orthologous proteins (PORC) available on Integr8. Users can use this page to ask InteroPorc for all species present in Integr8. Some results are already computed and users can run InteroPorc to investigate any other species. Currently, the following databases are processed and merged (with datetime of the last available public release for each database used): IntAct, MINT, DIP, and Integr8.

Proper citation: InteroPorc (RRID:SCR_002067) Copy   


  • RRID:SCR_003098

    This resource has 1000+ mentions.

http://www.wormbase.org

Central data repository for nematode biology including complete genomic sequence, gene predictions and orthology assignments from range of related nematodes.Data concerning genetics, genomics and biology of C. elegans and related nematodes. Derived from initial ACeDB database of C. elegans genetic and sequence information, WormBase includes genomic, anatomical and functional information of C. elegans, other Caenorhabditis species and other nematodes. Maintains public FTP site where researchers can find many commonly requested files and datasets, WormBase software and prepackaged databases.

Proper citation: WormBase (RRID:SCR_003098) Copy   


  • RRID:SCR_014650

    This resource has 10+ mentions.

http://www.openworm.org/

3D web browser that allows users to simulate and dissect virtual C. elegans. Users can explore the anatomy of a virtual, 3D worm by zooming in and out, rotating the model, and viewing the worm's different layers. NeuroML format and connector are used to enhance the simulation, and supporting programs and code are available for coders.

Proper citation: OpenWorm (RRID:SCR_014650) Copy   


https://elegansvariation.org/

Supplier and researcher of wild C. elegans strains. CeNDR supplies organisms, analyzes whole-genome sequences, and facilitates genetic mappings to aid researchers in gene discovery.

Proper citation: Caenorhabditis elegans Natural Diversity Resource (CeNDR) (RRID:SCR_014958) Copy   


https://cgc.umn.edu

Center that acquires, maintains, and distributes genetic stocks and information about stocks of the small free-living nematode Caenorhabditis elegans for use by investigators initiating or continuing research on this genetic model organism. A searchable strain database, general information about C. elegans, and links to key Web sites of use to scientists, including WormBase, WormAtlas, and WormBook are available.

Proper citation: Caenorhabditis Genetics Center (RRID:SCR_007341) Copy   


  • RRID:SCR_007830

    This resource has 1+ mentions.

http://senselab.med.yale.edu/ordb/

Database of vertebrate olfactory receptors genes and proteins. It supports sequencing and analysis of these receptors by providing a comprehensive archive with search tools for this expanding family. The database also incorporates a broad range of chemosensory genes and proteins, including the taste papilla receptors (TPRs), vomeronasal organ receptors (VNRs), insect olfaction receptors (IORs), Caenorhabditis elegans chemosensory receptors (CeCRs), and fungal pheromone receptors (FPRs). ORDB currently houses chemosensory receptors for more than 50 organisms. ORDB contains public and private sections which provide tools for investigators to analyze the functions of these very large gene families of G protein-coupled receptors. It also provides links to a local cluster of databases of related information in SenseLab, and to other relevant databases worldwide. The database aims to house all of the known olfactory receptor and chemoreceptor sequences in both nucleotide and amino acid form and serves four main purposes: * It is a repository of olfactory receptor sequences. * It provides tools for sequence analysis. * It supports similarity searches (screens) which reduces duplicate work. * It provides links to other types of receptor information, e.g. 3D models. The database is accessible to two classes of users: * General public www users have full access to all the public sequences, models and resources in the database. * Source laboratories are the laboratories that clone olfactory receptors and submit sequences in the private or public database. They can search any sequence they deposited to the database against any private or public sequence in the database. This user level is suited for laboratories that are actively cloning olfactory receptors.

Proper citation: Olfactory Receptor DataBase (RRID:SCR_007830) Copy   


  • RRID:SCR_007837

    This resource has 1+ mentions.

http://organelledb.lsi.umich.edu/

Database of organelle proteins, and subcellular structures / complexes from compiled protein localization data from organisms spanning the eukaryotic kingdom. All data may be downloaded as a tab-delimited text file and new localization data (and localization images, etc) for any organism relevant to the data sets currently contained in Organelle DB is welcomed. The data sets in Organelle DB encompass 138 organisms with emphasis on the major model systems: S. cerevisiae, A. thaliana, D. melanogaster, C. elegans, M. musculus, and human proteins as well. In particular, Organelle DB is a central repository of yeast protein localization data, incorporating results from both previous and current (ongoing) large-scale studies of protein localization in Saccharomyces cerevisiae. In addition, we have manually curated several recent subcellular proteomic studies for incorporation in Organelle DB. In total, Organelle DB is a singular resource consolidating our knowledge of the protein composition of eukaryotic organelles and subcellular structures. When available, we have included terms from the Gene Ontologies: the cellular component, molecular function, and biological process fields are discussed more fully in GO. Additionally, when available, we have included fluorescent micrographs (principally of yeast cells) visualizing the described protein localization. Organelle View is a visualization tool for yeast protein localization. It is a visually engaging way for high school and undergraduate students to learn about genetics or for visually-inclined researchers to explore Organelle DB. By revealing the data through a colorful, dimensional model, we believe that different kinds of information will come to light.

Proper citation: Organelle DB (RRID:SCR_007837) Copy   


http://akt.ucsf.edu/EGAN/

Exploratory Gene Association Networks (EGAN) is a software tool that allows a bench biologist to visualize and interpret the results of high-throughput exploratory assays in an interactive hypergraph of genes, relationships (protein-protein interactions, literature co-occurrence, etc.) and meta-data (annotation, signaling pathways, etc.). EGAN provides comprehensive, automated calculation of meta-data coincidence (over-representation, enrichment) for user- and assay-defined gene lists, and provides direct links to web resources and literature (NCBI Entrez Gene, PubMed, KEGG, Gene Ontology, iHOP, Google, etc.). EGAN functions as a module for exploratory investigation of analysis results from multiple high-throughput assay technologies, including but not limited to: * Transcriptomics via expression microarrays or RNA-Seq * Genomics via SNP GWAS or array CGH * Proteomics via MS/MS peptide identifications * Epigenomics via DNA methylation, ChIP-on-Chip or ChIP-Seq * In-silico analysis of sequences or literature EGAN has been built using Cytoscape libraries for graph visualization and layout, and is comparable to DAVID, GSEA, Ingenuity IPA and Ariadne Pathway Studio. There are pre-collated EGAN networks available for human (Homo sapiens), mouse (Mus musculus), rat (Rattus norvegicus), chicken (Gallus gallus), zebrafish (Danio rerio), fruit fly (Drosophila melanogaster), nematode (Caenorhabditis elegans), mouse-ear cress (Arabidopsis thaliana), rice (Oryza sativa) and brewer's yeast (Saccharomyces cerevisiae). There is now an EGAN module available for GenePattern (human-only). Platform: Windows compatible, Mac OS X compatible, Linux compatible

Proper citation: EGAN: Exploratory Gene Association Networks (RRID:SCR_008856) Copy   


  • RRID:SCR_016205

    This resource has 1+ mentions.

https://github.com/cyaguesa/SL-quant/

Source code for a bash pipeline that quantifies splice-leader (SL) trans-splicing events by genes in the nematode C. elegans. It is designed to work downstream of read mapping and takes the reads left unmapped as primary input.

Proper citation: SL-quant (RRID:SCR_016205) Copy   


  • RRID:SCR_005680

http://genenet2.uthsc.edu/geneinfoviz/search.php

GeneInfoViz is a web based tool for batch retrieval of gene function information, visualization of GO structure and construction of gene relation networks. It takes a input list of genes in the form of LocusLink ID, UniGeneID, gene symbol, or accession number and returns their functional genomic information. Based on the GO annotations of the given genes, GeneInfoViz allows users to visualize these genes in the DAG structure of GO, and construct a gene relation network at a selected level of the DAG. Platform: Online tool

Proper citation: GeneInfoViz (RRID:SCR_005680) Copy   


  • RRID:SCR_006943

    This resource has 100+ mentions.

http://genecodis.cnb.csic.es/

Web-based tool for the ontological analysis of large lists of genes. It can be used to determine biological annotations or combinations of annotations that are significantly associated to a list of genes under study with respect to a reference list. As well as single annotations, this tool allows users to simultaneously evaluate annotations from different sources, for example Biological Process and Cellular Component categories of Gene Ontology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneCodis (RRID:SCR_006943) Copy   


  • RRID:SCR_005744

    This resource has 10+ mentions.

http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/publications/GeneMerge.html

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Web-based and standalone application that returns a wide range of functional genomic data for a given set of study genes and provides rank scores for over-representation of particular functions or categories in the data. It uses the hypergeometric test statistic which returns statistically correct results for samples of all sizes and is the #2 fastest GO tool available (Khatri and Draghici, 2005). GeneMerge can be used with any discrete, locus-based annotation data, including, literature references, genetic interactions, mutant phenotypes as well as traditional Gene Ontology queries. GeneMerge is particularly useful for the analysis of microarray data and other large biological datasets. The big advantage of GeneMerge over other similar programs is that you are not limited to analyzing your data from the perspective of a pre-packaged set of gene-association data. You can download or create gene-association files to analyze your data from an unlimited number of perspectives. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMerge (RRID:SCR_005744) Copy   


http://www.ihop-net.org/UniPub/iHOP/

Information system that provides a network of concurring genes and proteins extends through the scientific literature touching on phenotypes, pathologies and gene function. It provides this network as a natural way of accessing millions of PubMed abstracts. By using genes and proteins as hyperlinks between sentences and abstracts, the information in PubMed can be converted into one navigable resource, bringing all advantages of the internet to scientific literature research. Moreover, this literature network can be superimposed on experimental interaction data (e.g., yeast-two hybrid data from Drosophila melanogaster and Caenorhabditis elegans) to make possible a simultaneous analysis of new and existing knowledge. The network contains half a million sentences and 30,000 different genes from humans, mice, D. melanogaster, C. elegans, zebrafish, Arabidopsis thaliana, yeast and Escherichia coli.

Proper citation: Information Hyperlinked Over Proteins (RRID:SCR_004829) Copy   


http://llama.mshri.on.ca/funcassociate/

A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool

Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy   


  • RRID:SCR_005055

    This resource has 1+ mentions.

http://146.189.76.171/query.php

Tool to search for targets of conserved microRNAs in Caenorhabditis elegans by weighting RISC-immunoprecipitation-enriched parameters.

Proper citation: mirWIP (RRID:SCR_005055) Copy   


  • RRID:SCR_006343

    This resource has 1+ mentions.

http://www.btool.org/ADGO2

A web-based tool that provides composite interpretations for microarray data comparing two sample groups as well as lists of genes from diverse sources of biological information. It provides multiple gene set analysis methods for microarray inputs as well as enrichment analyses for lists of genes. It screens redundant composite annotations when generating and prioritizing them. It also incorporates union and subtracted sets as well as intersection sets. Users can upload their gene sets (e.g. predicted miRNA targets) to generate and analyze new composite sets.

Proper citation: ADGO (RRID:SCR_006343) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X