Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.
Proper citation: KEGG (RRID:SCR_012773) Copy
http://www.zebrafinchatlas.org
Expression atlas of in situ hybridization images from large collection of genes expressed in brain of adult male zebra finches. Goal of ZEBrA project is to develop publicly available on-line digital atlas that documents expression of large collection of genes within brain of adult male zebra finches.
Proper citation: Zebra Finch Expression Brain Atlas (RRID:SCR_012988) Copy
https://omictools.com/l2l-tool
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.
Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: L2L Microarray Analysis Tool (RRID:SCR_013440) Copy
Functional genomic database for malaria parasites. Database for Plasmodium spp. Provides resource for data analysis and visualization in gene-by-gene or genome-wide scale. PlasmoDB 5.5 contains annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution data. Data can be queried by selecting from query grid or drop down menus. Results can be combined with each other on query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.Key community database for malaria researchers, intersecting many types of laboratory and computational data, aggregated by gene.
Proper citation: PlasmoDB (RRID:SCR_013331) Copy
Database for ESTs (Expressed Sequence Tags), consensus sequences, bacterial artificial chromosome (BAC) clones, BES (BAC End Sequences). They have generated 69,545 ESTs from 6 full-length cDNA libraries (Porcine Abdominal Fat, Porcine Fat Cell, Porcine Loin Muscle, Liver and Pituitary gland). They have also identified a total of 182 BAC contigs from chromosome 6. It is very valuable resources to study porcine quantitative trait loci (QTL) mapping and genome study. Users can explore genomic alignment of various data types, including expressed sequence tags (ESTs), consensus sequences, singletons, QTL, Marker, UniGene and BAC clones by several options. To estimate the genomic location of sequence dataset, their data aligned BES (BAC End Sequences) instead of genomic sequence because Pig Genome has low-coverage sequencing data. Sus scrofa Genome Database mainly provide comparative map of four species (pig, cattle, dog and mouse) in chromosome 6.
Proper citation: PiGenome (RRID:SCR_013394) Copy
Database of traceable, standardized, annotated gene signatures which have been manually curated from publications that are indexed in PubMed. The Advanced Gene Search will perform a One-tailed Fisher Exact Test (which is equivalent to Hypergeometric Distribution) to test if your gene list is over-represented in any gene signature in GeneSigDB. Gene expression studies typically result in a list of genes (gene signature) which reflect the many biological pathways that are concurrently active. We have created a Gene Signature Data Base (GeneSigDB) of published gene expression signatures or gene sets which we have manually extracted from published literature. GeneSigDB was creating following a thorough search of PubMed using defined set of cancer gene signature search terms. We would be delighted to accept or update your gene signature. Please fill out the form as best you can. We will contact you when we get it and will be happy to work with you to ensure we accurately report your signature. GeneSigDB is capable of providing its functionality through a Java RESTful web service.
Proper citation: GeneSigDB (RRID:SCR_013275) Copy
http://www.viprbrc.org/brc/home.do?decorator=vipr
Provides searchable public repository of genomic, proteomic and other research data for different strains of pathogenic viruses along with suite of tools for analyzing data. Data can be shared, aggregated, analyzed using ViPR tools, and downloaded for local analysis. ViPR is an NIAID-funded resource that support the research of viral pathogens in the NIAID Category A-C Priority Pathogen lists and those causing (re)emerging infectious diseases. It provides a dedicated gateway to SARS-CoV-2 data that integrates data from external sources (GenBank, UniProt, Immune Epitope Database, Protein Data Bank), direct submissions, analysis pipelines and expert curation, and provides a suite of bioinformatics analysis and visualization tools for virology research.
Proper citation: Virus Pathogen Resource (ViPR) (RRID:SCR_012983) Copy
http://bioinformatics.psb.ugent.be/ENIGMA/
A software tool to extract gene expression modules from perturbational microarray data, based on the use of combinatorial statistics and graph-based clustering. The modules are further characterized by incorporating other data types, e.g. GO annotation, protein interactions and transcription factor binding information, and by suggesting regulators that might have an effect on the expression of (some of) the genes in the module. Version : ENIGMA 1.1 used GO annotation version : Aug 29th 2007
Proper citation: ENIGMA (RRID:SCR_013400) Copy
http://bioinformatics.ust.hk/BOOST.html
Software application (entry from Genetic Analysis Software) for a method for detecting gene-gene interactions. It allows examining all pairwise interactions in genome-wide case-control studies.
Proper citation: BOOST (RRID:SCR_013133) Copy
http://chgv.org/GenicIntolerance/
A gene-based score intended to help in the interpretation of human sequence data. The score is designed to rank genes in terms of whether they have more or less common functional genetic variation relative to the genome wide expectation given the amount of apparently neutral variation the gene has. A gene with a positive score has more common functional variation, and a gene with a negative score has less and is referred to as intolerant.
Proper citation: Residual Variation Intolerance Score (RVIS) (RRID:SCR_013850) Copy
Data analysis tool that utilizes the Comparative CT (ddCT) method to rapidly and accurately quantitate relative gene expression across a large number of genes and samples. Raw input from plates or arrays can be analyzed according to user-determined settings.
Proper citation: DataAssist (RRID:SCR_014969) Copy
https://portals.broadinstitute.org/cmap/
Collection of genome-wide transcriptional expression data from cultured human cells treated with bioactive small molecules and simple pattern-matching algorithms. camp aims to enable the discovery of functional connections between drugs, genes and diseases through the transitory feature of common gene-expression changes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Connectivity Map 02 (RRID:SCR_015674) Copy
http://www.genepattern-notebook.org/
Interactive analysis notebook environment that streamlines genomics research by interleaving text, multimedia, and executable code into unified, sharable, reproducible “research narratives.” It integrates the dynamic capabilities of notebook systems with an investigator-focused, simple interface that provides access to hundreds of genomic tools without the need to write code.
Proper citation: GenePattern Notebook (RRID:SCR_015699) Copy
https://funricegenes.github.io/
Dataset of functionally characterized rice genes and members of different gene families. The dataset was created by integrating data from available databases and reviewing publications of rice functional genomic studies.
Proper citation: funRiceGenes (RRID:SCR_015778) Copy
http://apps.cytoscape.org/apps/cluepedia
Data analysis software and search tool for new markers potentially associated to pathways. CluePedia calculates linear and non-linear statistical dependencies from experimental data and investigates interrelations within each pathway to reveal associations through gene/protein/miRNA enrichments.
Proper citation: CluePedia Cytoscape plugin (RRID:SCR_015784) Copy
Consortium studying the regulation and alternative splicing of gene expression in multiple tissues from human brains. The UKBEC dataset comprises of brains from individuals free of neurodegenerative disorders.
Proper citation: UK Brain Expression Consortium (RRID:SCR_015889) Copy
https://github.com/WangHYLab/fcirc
Software Python pipeline for linear and circular RNAs of known fusions exploration. Pipeline for exploring linear transcripts and circRNAs of known fusions based on RNA-Seq data. Known fusion genes are from multiple databases like COSMIC, ChimerDB, TicDB, FARE-CAFE and FusionCancer or user-added gene-pairs.
Proper citation: Fcirc (RRID:SCR_018090) Copy
Database of Immune Cell Expression, Expression quantitative trait loci (eQTLs) and Epigenomics. Collection of identified cis-eQTLs for 12,254 unique genes, which represent 61% of all protein-coding genes expressed in human cell types. Datasets to help reveal effects of disease risk associated genetic polymorphisms on specific immune cell types, providing mechanistic insights into how they might influence pathogenesis.
Proper citation: Database of Immune Cell Epigenomes (RRID:SCR_018259) Copy
https://health.uconn.edu/worm-lab/track-a-worm/
Open source system for quantitative assessment of C. Elegans locomotory and bending behavior. Used for quantitative behavioral analyses to understand circuit and gene bases of behavior. Constantly records and analyzes position and body shape of freely moving worm at high magnification.
Proper citation: Track-A-Worm (RRID:SCR_018299) Copy
https://metacpan.org/pod/Bio::CUA
Software tool as flexible and comprehensive codon usage analyzer. Used to analyze codon usage bias (CUB) and relevant problems.
Proper citation: Codon Usage Analyzer (RRID:SCR_018500) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.