Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.uniprot.org/uniparc/
Database that contains publicly available protein sequences with stable and unique identifiers (UPI) which are never removed, changed or reassigned. UniParc tracks sequence changes in the source databases and archives the history of all changes. Information other than protein sequence must be retrieved from the UniParc source databases using the database cross-references.
Proper citation: UniParc (RRID:SCR_005818) Copy
Dr.VIS collects and locates human disease-related viral integration sites. So far, about 600 sites covering 5 virus organisms and 11 human diseases are available. Integration sites in Dr.VIS are located against chromosome, cytoband, gene and refseq position as specific as possible. Viral-cellular junction sequences are extracted from papers and nucleotide databases, and linked to corresponding integration sites Graphic views summarizing distribution of viral integration sites are generated according to chromosome maps. Dr.VIS is built with a hope to facilitate research of human diseases and viruses. Dr.VIS provides curated knowledge of integration sites from chromosome region narrow to genomic position, as well as junction sequences if available. Dr.VIS is an open resource for free.
Proper citation: Dr.VIS - Human Disease-Related Viral Integration Sites (RRID:SCR_005965) Copy
http://www.ebi.ac.uk/thornton-srv/databases/FunTree/
FunTree provides a range of data resources to detect the evolution of enzyme function within distant structurally related clusters within domain super families as determined by CATH. To access the resource enter a specific CATH superfamily code or search for a structure / sequence / function (either via a EC code or KEGG ligand / reaction ID, PDB ID or UniProtKB ID). Or browse the resource via superfamily / function / structure / metabolites & reactions via the menu on the left panel. FunTree is a new resource that brings together sequence, structure, phylogenetic, chemical and mechanistic information for structurally defined enzyme superfamilies. Gathering together this range of data into a single resource allows the investigation of how novel enzyme functions have evolved within a structurally defined superfamily as well as providing a means to analyse trends across many superfamilies. This is done not only within the context of an enzyme''''s sequence and structure but also the relationships of their reactions. Developed in tandem with the CATH database, it currently comprises 276 superfamilies covering 1800 (70%) of sequence assigned enzyme reactions. Central to the resource are phylogenetic trees generated from structurally informed multiple sequence alignments using both domain structural alignments supplemented with domain sequences and whole sequence alignments based on commonality of multi-domain architectures. These trees are decorated with functional annotations such as metabolite similarity as well as annotations from manually curated resources such the catalytic site atlas and MACiE for enzyme mechanisms.
Proper citation: FunTree (RRID:SCR_006014) Copy
http://www.hpppi.iicb.res.in/btox/
Database of Bacterial ExoToxins for Human is a database of sequences, structures, interaction networks and analytical results for 229 exotoxins, from 26 different human pathogenic bacterial genus. All toxins are classified into 24 different Toxin classes. The aim of DBETH is to provide a comprehensive database for human pathogenic bacterial exotoxins. DBETH also provides a platform to its users to identify potential exotoxin like sequences through Homology based as well as Non-homology based methods. In homology based approach the users can identify potential exotoxin like sequences either running BLASTp against the toxin sequences or by running HMMER against toxin domains identified by DBETH from human pathogenic bacterial exotoxins. In Non-homology based part DBETH uses a machine learning approach to identify potential exotoxins (Toxin Prediction by Support Vector Machine based approach).
Proper citation: DBETH - Database for Bacterial ExoToxins for Humans (RRID:SCR_005908) Copy
http://mint.bio.uniroma2.it/virusmint/
A virus protein interactions database that collects and annotates all the interactions between human and viral proteins and integrates this information in the human protein interaction network. It uses the PSI-MI standard and is fully integrated with the MINT database. You can search for any viral or human protein by entering either common names or database identifiers or display a complete viral interactome.
Proper citation: VirusMINT (RRID:SCR_005987) Copy
http://omicslab.genetics.ac.cn/GOEAST/
Gene Ontology Enrichment Analysis Software Toolkit (GOEAST) is a web based software toolkit providing easy to use, visualizable, comprehensive and unbiased Gene Ontology (GO) analysis for high-throughput experimental results, especially for results from microarray hybridization experiments. The main function of GOEAST is to identify significantly enriched GO terms among give lists of genes using accurate statistical methods. Compared with available GO analysis tools, GOEAST has the following unique features: * GOEAST supports analysis for data from various resources, such as expression data obtained using Affymetrix, illumina, Agilent or customized microarray platforms. GOEAST also supports non-microarray based experimental data. The web-based feature makes GOEAST very user friendly; users only have to provide a list of genes in correct formats. * GOEAST provides visualizable analysis results, by generating graphs exhibiting enriched GO terms as well as their relationships in the whole GO hierarchy. * Note that GOEAST generates separate graph for each of the three GO categories, namely biological process, molecular function and cellular component. * GOEAST allows comparison of results from multiple experiments (see Multi-GOEAST tool). The displayed color of each GO term node in graphs generated by Multi-GOEAST is the combination of different colors used in individual GOEAST analysis. Platform: Online tool
Proper citation: GOEAST - Gene Ontology Enrichment Analysis Software Toolkit (RRID:SCR_006580) Copy
http://www.snpedia.com/index.php/SNPedia
Wiki investigating human genetics including information about the effects of variations in DNA, citing peer-reviewed scientific publications. It is used by Promethease to analyze and help explain your DNA. It is based on a wiki model in order to foster communication about genetic variation and to allow interested community members to help it evolve to become ever more relevant. As the cost of genotyping (and especially of fully determining your own genomic sequence) continues to drop, we''''ll all want to know more - a lot more - about the meaning of these DNA variations and SNPedia will be here to help. SNPedia has been launched to help realize the potential of the Human Genome Project to connect to our daily lives and well-being. For more information see the Wikipedia page, http://en.wikipedia.org/wiki/SNPedia * Download URL: http://www.SNPedia.com/index.php/Bulk * Web Service URL: http://bots.SNPedia.com/api.php
Proper citation: SNPedia (RRID:SCR_006125) Copy
Database to search through the nucleic acid structures from the Protein Data Bank and examine structural motifs, including (a)symmetric internal loops, bulge loops, and hairpin loops. They have compiled over 2,000 three-dimensional structures, which can now be searched using different parameters, including PDB information, experimental technique, sequence, and motif type. RNA secondary structure is important for designing therapeutics, understanding protein-RNA binding and predicting tertiary structure of RNA. Several databases and downloadable programs exist that specialize in the three-dimensional (3D) structure of RNA, but none focus specifically on secondary structural motifs such as internal, bulge and hairpin loops. To create the RNA CoSSMos database, 2156 Protein Data Bank (PDB) files were searched for internal, bulge and hairpin loops, and each loop''''s structural information, including sugar pucker, glycosidic linkage, hydrogen bonding patterns and stacking interactions, was included in the database. False positives were defined, identified and reclassified or omitted from the database to ensure the most accurate results possible. Users can search via general PDB information, experimental parameters, sequence and specific motif and by specific structural parameters in the subquery page after the initial search. Returned results for each search can be viewed individually or a complete set can be downloaded into a spreadsheet to allow for easy comparison. The RNA CoSSMos database is updated weekly.
Proper citation: RNA CoSSMos (RRID:SCR_006120) Copy
ProPortal is a database containing genomic, metagenomic, transcriptomic and field data for the marine cyanobacterium Prochlorococcus. Our goal is to provide a source of cross-referenced data across multiple scales of biological organization--from the genome to the ecosystem--embracing the full diversity of ecotypic variation within this microbial taxon, its sister group, Synechococcus and phage that infect them. The site currently contains the genomes of 13 Prochlorococcus strains, 11 Synechococcus strains and 28 cyanophage strains that infect one or both groups. Cyanobacterial and cyanophage genes are clustered into orthologous groups that can be accessed by keyword search or through a genome browser. Users can also identify orthologous gene clusters shared by cyanobacterial and cyanophage genomes. Gene expression data for Prochlorococcus ecotypes MED4 and MIT9313 allow users to identify genes that are up or downregulated in response to environmental stressors. In addition, the transcriptome in synchronized cells grown on a 24-h light-dark cycle reveals the choreography of gene expression in cells in a ''natural'' state. Metagenomic sequences from the Global Ocean Survey from Prochlorococcus, Synechococcus and phage genomes are archived so users can examine the differences between populations from diverse habitats. Finally, an example of cyanobacterial population data from the field is included.
Proper citation: ProPortal (RRID:SCR_006112) Copy
http://bioinformatics.biol.uoa.gr/PRED-TMBB/
A web tool, based on a Hidden Markov Model, capable of predicting the transmembrane beta-strands of the gram-negative bacteria outer membrane proteins, and of discriminating such proteins from water-soluble ones when screening large datasets. The model is trained in a discriminative manner, aiming at maximizing the probability of the correct prediction rather than the likelihood of the sequences. The training is performed on a non-redundant database consisting of 16 outer membrane proteins (OMP''s) with their structures known at atomic resolution. We show that we can achieve predictions at least as good comparing with other existing methods, using as input only the amino-acid sequence, without the need of evolutionary information included in multiple alignments. The method is also powerful when used for discrimination purposes, as it can discriminate with a high accuracy the outer membrane proteins from water soluble in large datasets, making it a quite reliable solution for screening entire genomes. This web-server can help you run a discriminating process on any amino-acid sequence and thereafter localize the transmembrane strands and find the topology of the loops.
Proper citation: PRED-TMBB (RRID:SCR_006190) Copy
http://bioapps.rit.albany.edu/MITOPRED/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. It predicts nuclear-encoded mitochondrial proteins from all eukaryotic species including plants. Prediction is based on the occurrence patterns of Pfam domains (version 16.0) in different cellular locations, amino acid composition and pI value differences between mitochondrial and non-mitochondrial locations. Additionally, you may download MITOPRED predictions for complete proteomes. Re-calculated predictions are instantly accessible for proteomes of Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila, Homo sapiens, Mus musculus and Arabidopsis species as well as all the eukaryotic sequences in the Swiss-Prot and TrEMBL databases. Queries, at different confidence levels, can be made through four distinct options: (i) entering Swiss-Prot/TrEMBL accession numbers; (ii) uploading a local file with such accession numbers; (iii) entering protein sequences; (iv) uploading a local file containing protein sequences in FASTA format. The Mitopred algorithm works based on the differences in the Pfam domain occurrence patters and amino acid composition differences in different cellular compartments. Location specific Pfam domains have been determined from the entire eukaryotic set of Swissprot database. Similarly, differences in the amino acid composition between mitochondrial and non-mitochondrial sequences were pre-calculated. This information is used to calculate location-specific amino acid weights that are used to calculate amino acid score. Similarly, pI average values of the N-terminal 25 residues in different cellular location were also determined. This knowledge-base is accessed by the program during execution.
Proper citation: mitopred (RRID:SCR_006135) Copy
http://genetrail.bioinf.uni-sb.de/
A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GeneTrail (RRID:SCR_006250) Copy
http://bioinformatics.intec.ugent.be/magic/
Web based interface for exploring and analyzing a comprehensive maize-specific cross-platform expression compendium. This compendium was constructed by collecting, homogenizing and formally annotating publicly available microarrays from Gene Expression Omnibus (GEO), and ArrayExpress.
Proper citation: Magic (RRID:SCR_006406) Copy
http://www.yandell-lab.org/software/maker.html
Software genome annotation pipeline. Portable and easily configurable genome annotation pipeline. Used to allow smaller eukaryotic and prokaryotic genomeprojects to independently annotate their genomes and to create genome databases. MAKER identifies repeats, aligns ESTs and proteins to genome, produces ab-initio gene predictions and automatically synthesizes these data into gene annotations having evidence based quality values.
Proper citation: MAKER (RRID:SCR_005309) Copy
A multiplatform open-source software to assist molecular biologists without much expertise in bioinformatics to manage, analyze and visualize their data. UGENE integrates widely used bioinformatics tools within a common user interface. The toolkit supports multiple biological data formats and allows the retrieval of data from remote data sources. It provides visualization modules for biological objects such as annotated genome sequences, Next Generation Sequencing (NGS) assembly data, multiple sequence alignments, phylogenetic trees and 3D structures. Most of the integrated algorithms are tuned for maximum performance by the usage of multithreading and special processor instructions. UGENE includes a visual environment for creating reusable workflows that can be launched on local resources or in a High Performance Computing (HPC) environment. UGENE is written in C++ using the Qt framework. The built-in plugin system and structured UGENE API make it possible to extend the toolkit with new functionality.
Proper citation: Unipro UGENE (RRID:SCR_005579) Copy
https://ccg.murdoch.edu.au/yabi/login/?next=/yabi/
A web-based analytical environment framework for bioinformatics applications that can be customized for a diverse range of -omics applications. The software system is adaptable to a range of both pluggable execution and data backends in an open source implementation. Enabling seamless and transparent access to heterogenous HPC environments at its core, it then provides an analysis workflow environment that can create and reuse workflows as well as manage large amounts of both raw and processed data in a secure and flexible way across geographically distributed compute resources. Yabi can be used via a web-based environment to drag-and-drop tools to create sophisticated workflows. It can also be accessed through the Yabi command line which is designed for users that are more comfortable with writing scripts or for enabling external workflow environments to leverage the features in Yabi. Configuring tools can be a significant overhead in workflow environments. Yabi greatly simplifies this task by enabling system administrators to configure as well as manage running tools via a web-based environment and without the need to write or edit software programs or scripts.
Proper citation: Yabi (RRID:SCR_005359) Copy
http://bioinf.wehi.edu.au/folders/melanie/haploclusters.html
Software program designed to detect excess haplotypes sharing in datasets consisting of case and control haplotypes. Excess haplotype sharing can be seen around disease loci in case samples since LD persists longer here than in the controls where LD is persisting only according to the relatedness of the individuals in the population, i.e. the age of the population. (entry from Genetic Analysis Software)
Proper citation: HAPLOCLUSTERS (RRID:SCR_007439) Copy
PubCrawler is a free alerting service that scans daily updates to the NCBI Medline (PubMed) and GenBank databases. PubCrawler helps keeping scientists informed of the current contents of Medline and GenBank, by listing new database entries that match their research interests. The free PubCrawler web service has been operating for five years and so far has brought literature and sequence updates to over 22 000 users. It provides information on a personalized web page whenever new articles appear in PubMed or when new sequences are found in GenBank that are specific to customized queries. The server also acts as an automatic alerting system by sending out short notifications or emails with the latest updates as soon as they become available. PubCrawler searches the NCBI PubMed (Medline) and Entrez (GenBank) databases daily using search parameters (keywords, author names, etc.) specified by the user. There is no limit on the number of searches that can be carried out. Previous search hits are stored and only the newest PubMed or GenBank records are shown each day. The results are presented as an HTML Web page, similar to the results of an NCBI PubMed or Entrez query. This Web page can be located on our computer (the PubCrawler WWW-Service), on your computer (the stand-alone program), or you can receive it via e-mail (set this up using the PubCrawler WWW-Service). The Web page sorts the results into groups of PubMed/GenBank entries that are zero-days-old, 1-day-old, 2-days-old, etc., up to a user-specified age limit. Sponsors: Development of PubCrawler was supported by EMBnet
Proper citation: PubCrawler (RRID:SCR_008235) Copy
http://compgen.rutgers.edu/multimap.shtml
Software program for automated construction of genetic maps (entry from Genetic Analysis Software)
Proper citation: MULTIMAP (RRID:SCR_007168) Copy
http://csg.sph.umich.edu/boehnke/sibmed.php
Software application that identifies likely genotyping errors and mutations for a sib pair in the context of multipoint mapping. (entry from Genetic Analysis Software)
Proper citation: SIBMED (RRID:SCR_007495) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.