Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 33 showing 641 ~ 660 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection

http://vortex.cs.wayne.edu/projects.htm#OE2GO

Onto-Express is a web-based tool in the Onto-Tools suite that performs automated function profiling for a list of differentially expressed genes. However, Onto-Express does not support functional profiling for the organisms that do not have annotations in public domain, or use of custom (i.e. user-defined) ontologies. This limitation is also true for most of the other existing tools for functional profiling, which means that researchers working with uncommon organisms and/or new annotations or ontologies may be forced to construct such profiles manually. Onto-Express To Go (OE2GO) is a new tool added to the Onto-Tools ensemble to address these issues. OE2GO is built on top of OE to leverage its existing functionality. In OE2GO, the users now have an option to use either the Onto-Tools database as a source of functional annotations or provide their own annotations in a separate file. Currently, OE2GO supports annotation file in the Gene Ontology format. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Onto-Express To Go (OE2GO) (RRID:SCR_008854) Copy   


  • RRID:SCR_009020

    This resource has 10+ mentions.

http://ageing-map.org/

Database of age-related changes covering different biological levels, including molecular, physiological, psychological and pathological age-related data, to create an interactive portal that serves as a centralized collection of human aging changes and pathologies. To facilitate integrative, system-level studies of aging, the DAA provides a centralized source for aging-related data as well as basic tools to query and visualize the data, including anatomical models. Data in the DAA is manually curated from the literature and retrieved from public databases. For more detailed analyses users are able to download the entire database. More information on how to use the DAA is available on the help page. The DAA primarily focuses on human aging, but also includes supplementary mouse data, in particular gene expression data, to enhance and expand the information on human aging. If you would like to contribute to the database yourself, for instance if you have new data on aging, please use the contribute page to submit your data.

Proper citation: Digital Ageing Atlas (RRID:SCR_009020) Copy   


  • RRID:SCR_009621

    This resource has 500+ mentions.

http://www.sph.umich.edu/csg/abecasis/MACH/download/

QTL analysis based on imputed dosages/posterior_probabilities.

Proper citation: MACH (RRID:SCR_009621) Copy   


  • RRID:SCR_010227

    This resource has 1+ mentions.

http://www.eplantsenescence.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 26, 2019. Database of leaf senescence to collect SAGs, mutants, phenotypes and literature references. Leaf senescence has been recognized as the last phase of plant development, a highly ordered process regulated by genes called SAGs. By integrating the data from mutant studies and transgenic analysis, they collected many SAGs related to regulation of the leaf senescence in various species. Additionally, they have categorized SAGs according to their functions in regulation of leaf senescence and used standard criteria to describe senescence associated phenotypes for mutants. Users are welcome to submit the new SAGs.

Proper citation: Leaf Senescence Database (RRID:SCR_010227) Copy   


  • RRID:SCR_010943

    This resource has 10000+ mentions.

http://bioinf.wehi.edu.au/limma/

Software package for the analysis of gene expression microarray data, especially the use of linear models for analyzing designed experiments and the assessment of differential expression.

Proper citation: LIMMA (RRID:SCR_010943) Copy   


http://pathways.mcdb.ucla.edu/algal/

Tools to search gene lists for functional term enrichment as well as to dynamically visualize proteins onto pathway maps. Additionally, integrated expression data may be used to discover similarly expressed genes based on a starting gene of interest.

Proper citation: Algal Functional Annotation Tool (RRID:SCR_012034) Copy   


http://bbid.irp.nia.nih.gov/

Database of images of putative biological pathways, macromolecular structures, gene families, and cellular relationships. It is of use to those who are working with large sets of genes or proteins using cDNA arrays, functional genomics, or proteomics. The rationale for this collection is that: # Except in a few cases, information on most biological pathways in higher eukaryotes is non-existent, incomplete, or conflicting. # Similar biological pathways differ by tissue context, developmental stages, stimulatory events, or for other complex reasons. This database allows comparisons of different variations of pathways that can be tested empirically. # The goal of this database is to use images created directly by biomedical scientists who are specialists in a particular biological system. It is specifically designed to NOT use average, idealized or redrawn pathways. It does NOT use pathways defined by computer algorithm or information search approaches. # Information on biological pathways in higher eukaryotes generally resides in the images and text of review papers. Much of this information is not easily accessible by current medical reference search engines. # All images are attributable to the original authors. All pathways or other biological systems described are graphic representations of natural systems. Each pathway is to be considered a work in progress. Each carries some degree of error or incompleteness. The end user has the ultimate responsibility to determine the scientific correctness and validity in their particular biological system. Image/pathway submissions are welcome.

Proper citation: Biological Biochemical Image Database (RRID:SCR_003474) Copy   


  • RRID:SCR_003357

    This resource has 1+ mentions.

http://mouseNET.princeton.edu

A functional network for laboratory mouse based on integration of diverse genetic and genomic data. It allows the users to accurately predict novel functional assignments and network components. MouseNET uses a probabilistic Bayesian algorithm to identify genes that are most likely to be in the same pathway/functional neighborhood as your genes of interest. It then displays biological network for the resulting genes as a graph. The nodes in the graph are genes (clicking on each node will bring up SGD page for that gene) and edges are interactions (clicking on each edge will show evidence used to predict this interaction). Most likely, the first results to load on the results page will be a list of significant Gene Ontology terms. This list is calculated for the genes in the biological network created by the mouseNET algorithm. If a gene ontology term appears on this list with a low p-value, it is statistically significantly overrepresented in this biological network. The graph may be explored further. As you move the mouse over genes in the network, interactions involving these genes are highlighted.If you click on any of the highlighted interactions graph, evidence pop-up window will appear. The Evidence pop-up lists all evidence for this interaction, with links to the papers that produced this evidence - clicking these links will bring up the relevant source citation(s) in PubMed.

Proper citation: MouseNET (RRID:SCR_003357) Copy   


http://www.xpmutations.org

Interactive repository of mutations and other allelic variations of the genes involved in the DNA repair disorders, Xeroderma Pigmentosum (XP), Cockayne Syndrome (CS), Trichothiodystrophy (TTD), and other UV-sensitivity disorders. Any omitted data or new data may be submitted by using the on-line data submission form. There is a message board system to support discussions amongst those interested in XP and DNA Repair. RESOURCES * Educational module of the molecular biology of Nucleotide Excision Repair * Introduction to the DNA Repair disorders (XP, CS, TTD, UVs) * Background on each of the XP genes * A searchable database of mutations and sequence variations for the XP genes * Contact point for the submission of new mutation data * Discussion Forums and a Guest Book * Web Links to Additional Resources

Proper citation: Allelic Variations of The XP Genes (RRID:SCR_003376) Copy   


http://mimi.ncibi.org/MimiWeb/main-page.jsp

MiMi Web gives you an easy to use interface to a rich NCIBI data repository for conducting your systems biology analyses. This repository includes the MiMI database, PubMed resources updated nightly, and text mined from biomedical research literature. The MiMI database comprehensively includes protein interaction information that has been integrated and merged from diverse protein interaction databases and other biological sources. With MiMI, you get one point of entry for querying, exploring, and analyzing all these data. MiMI provides access to the knowledge and data merged and integrated from numerous protein interactions databases and augments this information from many other biological sources. MiMI merges data from these sources with deep integration into its single database with one point of entry for querying, exploring, and analyzing all these data. MiMI allows you to query all data, whether corroborative or contradictory, and specify which sources to utilize. MiMI displays results of your queries in easy-to-browse interfaces and provides you with workspaces to explore and analyze the results. Among these workspaces is an interactive network of protein-protein interactions displayed in Cytoscape and accessed through MiMI via a MiMI Cytoscape plug-in. MiMI gives you access to more information than you can get from any one protein interaction source such as: * Vetted data on genes, attributes, interactions, literature citations, compounds, and annotated text extracts through natural language processing (NLP) * Linkouts to integrated NCIBI tools to: analyze overrepresented MeSH terms for genes of interest, read additional NLP-mined text passages, and explore interactive graphics of networks of interactions * Linkouts to PubMed and NCIBI's MiSearch interface to PubMed for better relevance rankings * Querying by keywords, genes, lists or interactions * Provenance tracking * Quick views of missing information across databases. Data Sources include: BIND, BioGRID, CCSB at Harvard, cPath, DIP, GO (Gene Ontology), HPRD, IntAct, InterPro, IPI, KEGG, Max Delbreuck Center, MiBLAST, NCBI Gene, Organelle DB, OrthoMCL DB, PFam, ProtoNet, PubMed, PubMed NLP Mining, Reactome, MINT, and Finley Lab. The data integration service is supplied under the conditions of the original data sources and the specific terms of use for MiMI. Access to this website is provided free of charge. The MiMI data is queryable through a web services api. The MiMI data is available in PSI-MITAB Format. These files represent a subset of the data available in MiMI. Only UniProt and RefSeq identifiers are included for each interactor, pathways and metabolomics data is not included, and provenance is not included for each interaction. If you need access to the full MiMI dataset please send an email to mimi-help (at) umich.edu.

Proper citation: Michigan Molecular Interactions (RRID:SCR_003521) Copy   


http://www.loni.usc.edu/BIRN/Projects/Mouse/

Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.

Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy   


  • RRID:SCR_003449

    This resource has 1+ mentions.

http://rgd.mcw.edu/tools/ontology/ont_search.cgi

Ontology that defines hierarchical display of different rat strains as derived from parental strains. Ontology Browser allows to retrieve all genes, QTLs, strains and homologs annotated to particular term. Covers all types of biological pathways including altered and disease pathways, and to capture relationships between them within hierarchical structure. Five nodes of ontology include classic metabolic, regulatory, signaling, drug and disease pathways. Ontology allows for standardized annotation of rat. Serves as vehicle to connect between genes and ontology reports, between reports and interactive pathway diagrams, between pathways that directly connect to one another within diagram or between pathways that in some fashion are globally related in pathway suites and suite networks.

Proper citation: Rat Strain Ontology (RRID:SCR_003449) Copy   


  • RRID:SCR_003591

http://bejerano.stanford.edu/phenotree/

Web server to search for genes involved in given phenotypic difference between mammalian species. The mouse-referenced multiple alignment data files used to perform the forward genomics screen is also available. The webserver implements one strategy of a Forward Genomics approach aiming at matching phenotype to genotype. Forward genomics matches a given pattern of phenotypic differences between species to genomic differences using a genome-wide screen. In the implementation, the divergence of the coding region of genes in mammals is measured. Given an ancestral phenotypic trait that is lost in independent mammalian lineages, it is shown that searching for genes that are more diverged in all trait-loss species can discover genes that are involved in the given phenotype.

Proper citation: Phenotree (RRID:SCR_003591) Copy   


  • RRID:SCR_003825

    This resource has 1+ mentions.

http://www.agedbrainsysbio.eu/

Consortium focused on identifying the foundational pathways responsible for the aging of the brain, with a focus on Late Onset Alzheimer's disease. They aim to identify the interactions through which the aging phenotype develops in normal and in disease conditions; modeling novel pathways and their evolutionary properties to design experiments that identify druggable targets. As early steps of neurodegenerative disorders are expected to impact synapse function the project will focus in particular on pre- or postsynaptic protein networks. The concept is to identify subsets of pathways with two unique druggable hallmarks, the validation of interactions occurring locally in subregions of neurons and a human and/or primate accelerated evolutionary signature. The consortium will do this through six approaches: * identification of interacting protein networks from recent Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) data, * experimental validation of interconnected networks working in subregion of a neuron (such as dendrites and dendritic spines), * inclusion of these experimentally validated networks in larger networks obtained from available databases to extend possible protein interactions, * identification of human and/or primate positive selection either in coding or in regulatory gene sequences, * manipulation of these human and/or primate accelerated evolutionary interacting proteins in human neurons derived from induced Pluripotent Stem Cells (iPSCs) * modeling predictions in drosophila and novel mouse transgenic models * validation of new druggable targets and markers as a proof-of-concept towards the prevention and cure of aging cognitive defects. The scientists will share results and know-how on Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) gene discovery, comparative functional genomics in mouse and drosophila models, in mouse transgenic approaches, research on human induced pluripotent stem cells (hiPSC) and their differentiation in vitro and modeling pathways with emphasis on comparative and evolutionary aspects. The four European small to medium size enterprises (SMEs) involved will bring their complementary expertise and will ensure translation of project results to clinical application.

Proper citation: AgedBrainSYSBIO (RRID:SCR_003825) Copy   


  • RRID:SCR_003811

    This resource has 10+ mentions.

https://www.bioshare.eu/

A consortium of leading biobanks and international researchers from all domains of biobanking science to ensure the development of harmonized measures and standardized computing infrastructures enabling the effective pooling of data and key measures of life-style, social circumstances and environment, as well as critical sub-components of the phenotypes associated with common complex diseases. The overall aim is to build upon tools and methods available to achieve solutions for researchers to use pooled data from different cohort and biobank studies. This, in order to obtain the very large sample sizes needed to investigate current questions in multifactorial diseases, notably on gene-environment interactions. This aim will be achieved through the development of harmonization and standardization tools, implementation of these tools and demonstration of their applicability. BioSHaRE researchers are collaborating with P3G, the Global Alliance for Genomics and Health, IRDiRC (International Rare Diseases Research Consortium), H3Africa and other organizations on the development of an International Code of Conduct for Genomic and Health-Related Data Sharing. A draft version is available for external review. Generic documents have been prepared covering areas of biobanking that are of major importance. SOPs have been finalized for blood withdrawal (SOPWP5001blood withdrawal), manual blood processing (SOPWP5002blood processing), shipping of biosamples (SOPWP5003shipping) and withdrawal, processing and storage of urine samples (SOPWP5004urine).

Proper citation: BioSHaRE (RRID:SCR_003811) Copy   


  • RRID:SCR_004168

http://sing.ei.uvigo.es/GC/

Tool for extensively testing the discriminatory power of biologically relevant gene sets in microarray data classification. While the user can work with different gene set collections and several microarray data files to configure specific classification experiments, the tool is able to run several tests in parallel. It is able to render valuable information for diagnostic analyses and clinical management decisions based on systematically evaluating custom hypothesis over different data sets using complementary classifiers, a key aspect in clinical research.

Proper citation: GeneCommittee (RRID:SCR_004168) Copy   


  • RRID:SCR_003870

    This resource has 1+ mentions.

http://www.mip-dili.eu/

Consortium that brings together Europe's top industrial and academic experts to develop new tests that will help researchers detect potential liver toxicity issues much earlier in drug development, saving many patients from the trauma of liver failure. The team aims to deepen the understanding of the science behind drug-induced liver injury, and use that knowledge to overcome the many drawbacks of the tests currently used. A major focus will be on a systematic and evidence-based evaluation of both currently available and new laboratory test systems, including cultures of liver cells in one-dimensional and three dimensional configurations. The project will also develop models that take into account the natural differences between patients. This is important because factors such as certain genes, the liver's immune response, and viral infections have all been associated with an increased risk of DILI. The project will seek to address the current lack of human liver cells available to researchers by using induced pluripotent stem cells (iPSCs) generated from patients who are particularly sensitive to DILI. Another strand of the project will develop computer models to unravel the complex, often inter-related mechanisms behind DILI. Finally, the team will assess how accurate the results of laboratory tests are at predicting actual outcomes in patients.

Proper citation: MIP-DILI (RRID:SCR_003870) Copy   


  • RRID:SCR_003872

    This resource has 1+ mentions.

http://www.newmeds-europe.com/

Consortium that will develop new models and methods to enable novel treatments for schizophrenia and depression including three important missing tools that will facilitate the translation of scientific findings into benefits for patients. The project will focus on developing new animal models which use brain recording and behavioral tests to identify innovative and effective drugs for schizophrenia. The project will develop standardized paradigms, acquisition and analysis techniques to apply brain imaging, especially fMRI and PET imaging to drug development. It will examine how new genetic findings (duplication and deletion or changes in genes) influence the response to various drugs and whether this information can be used to choose the right drug for the right patient. And finally, it will try and develop new approaches for shorter and more efficient trials of new medication - trials that may require fewer patients and give faster results.

Proper citation: NEWMEDS (RRID:SCR_003872) Copy   


  • RRID:SCR_004219

    This resource has 1+ mentions.

https://brainspan.org/

Atlas of developing human brain for studying transcriptional mechanisms involved in human brain development. One of the BrainSpan datasets, Exon microarray summarized to genes, is presented. It is a downloadable archive of files containing normalized RNA-Seq expression values for analysis.

Proper citation: BrainSpan (RRID:SCR_004219) Copy   


  • RRID:SCR_004438

    This resource has 1+ mentions.

http://dkcoin.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented October 13, 2014. The resource has moved to the NIDDKInformation Network (dkNET) project. Contact them at info_at_dknet.org with any questions. Database of large pools of data relevant to the mission of NIDDKwith the goal of developing a community-based network for integration across disciplines to include the larger DKuniverse of diseases, investigators, and potential users. The focus is on greater use of this data with the objective of adding value by breaking down barriers between sites to facilitate linking of different datasets. To date (2013/06/10), a total of 1,195 resources have been associated with one or more genes. Of 11,580 total genes associated with resources, the ten most represented are associated with 359 distinct resources. The main method by which they currently interconnect resources between the providers is via EntrezGene identifiers. A total of 780 unique genes provide the connectivity between 3,159 resource pairs across consortia. To further increase interconnectivity, the groups have been further annotating their data with additional gene identifiers, publications, and ontology terms from selected Open Biological and Biomedical Ontologies (OBO).

Proper citation: dkCOIN (RRID:SCR_004438) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X