Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 31 showing 601 ~ 620 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_006663

    This resource has 1000+ mentions.

http://rice.plantbiology.msu.edu/

Database and resource that provides sequence and annotation data for the rice genome. This website provides genome sequence from the Nipponbare subspecies of rice and annotation of the 12 rice chromosomes. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 75 tracks of annotation. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads. Rice is a model species for the monocotyledonous plants and the cereals which are the greatest source of food for the world''s population. While rice genome sequence is available through multiple sequencing projects, high quality, uniform annotation is required in order for genome sequence data to be fully utilized by researchers. The existence of a common gene set and uniform annotation allows researchers within the rice community to work from a common resource so that their results can be more easily interpreted by other scientists. The objective of this project has always been to provide high quality annotation for the rice genome. They generated, refined and updated gene models for the estimated 40,000-60,000 total rice genes, provided standardized annotation for each model, linked each model to functional annotation including expression data, gene ontologies, and tagged lines. They have provided a resource to extend the annotation of the rice genome to other plant species by providing comparative alignments to other plant species. Analysis/Tools are available including: BLAST, Locus Name Search, Functional Term Search, Protein Domain Search, Anatomy Expression Viewer, Highly Expressed Genes

Proper citation: Rice Genome Annotation (RRID:SCR_006663) Copy   


  • RRID:SCR_006539

    This resource has 50+ mentions.

http://www.informatics.jax.org/expression.shtml

Community database that collects and integrates the gene expression information in MGI with a primary emphasis on endogenous gene expression during mouse development. The data in GXD are obtained from the literature, from individual laboratories, and from large-scale data providers. All data are annotated and reviewed by GXD curators. GXD stores and integrates different types of expression data (RNA in situ hybridization; Immunohistochemistry; in situ reporter (knock in); RT-PCR; Northern and Western blots; and RNase and Nuclease s1 protection assays) and makes these data freely available in formats appropriate for comprehensive analysis. There is particular emphasis on endogenous gene expression during mouse development. GXD also maintains an index of the literature examining gene expression in the embryonic mouse. It is comprehensive and up-to-date, containing all pertinent journal articles from 1993 to the present and articles from major developmental journals from 1990 to the present. GXD stores primary data from different types of expression assays and by integrating these data, as data accumulate, GXD provides increasingly complete information about the expression profiles of transcripts and proteins in different mouse strains and mutants. GXD describes expression patterns using an extensive, hierarchically-structured dictionary of anatomical terms. In this way, expression results from assays with differing spatial resolution are recorded in a standardized and integrated manner and expression patterns can be queried at different levels of detail. The records are complemented with digitized images of the original expression data. The Anatomical Dictionary for Mouse Development has been developed by our Edinburgh colleagues, as part of the joint Mouse Gene Expression Information Resource project. GXD places the gene expression data in the larger biological context by establishing and maintaining interconnections with many other resources. Integration with MGD enables a combined analysis of genotype, sequence, expression, and phenotype data. Links to PubMed, Online Mendelian Inheritance in Man (OMIM), sequence databases, and databases from other species further enhance the utility of GXD. GXD accepts both published and unpublished data.

Proper citation: Gene Expression Database (RRID:SCR_006539) Copy   


http://www.dpvweb.net/

DPVweb provides a central source of information about viruses, viroids and satellites of plants, fungi and protozoa. Comprehensive taxonomic information, including brief descriptions of each family and genus, and classified lists of virus sequences are provided. The database also holds detailed, curated, information for all sequences of viruses, viroids and satellites of plants, fungi and protozoa that are complete or that contain at least one complete gene. For comparative purposes, it also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA genome. The start and end positions of each feature (gene, non-translated region and the like) have been recorded and checked for accuracy. As far as possible, nomenclature for genes and proteins are standardized within genera and families. Sequences of features (either as DNA or amino acid sequences) can be directly downloaded from the website in FASTA format. The sequence information can also be accessed via client software for PC computers (freely downloadable from the website) that enable users to make an easy selection of sequences and features of a chosen virus for further analyses. The public sequence databases contain vast amounts of data on virus genomes but accessing and comparing the data, except for relatively small sets of related viruses can be very time consuming. The procedure is made difficult because some of the sequences on these databases are incorrectly named, poorly annotated or redundant. The NCBI Reference Sequence project (1) provides a comprehensive, integrated, non-redundant set of sequences, including genomic DNA, transcript (RNA) and protein products, for major research organisms. This now includes curated information for a single sequence of each fully sequenced virus species. While this is a welcome development, it can only deal with complete sequences. An important feature of DPV is the opportunity to access genes (and other features) of multiple sequences quickly and accurately. Thus, for example, it is easy to obtain the nucleotide or amino acid sequences of all the available accessions of the coat protein gene of a given virus species or for a group of viruses. To increase its usefulness further, DPVweb also contains a single representative sequence of all other fully sequenced virus species with an RNA or single-stranded DNA (ssDNA) genome. Sponsors: This site is supported by the Association of Applied Biologists and the Zhejiang Academy of Agricultural Sciences, Hangzhou, People''s Republic of China.

Proper citation: Descriptions of Plant Viruses (RRID:SCR_006656) Copy   


  • RRID:SCR_006498

    This resource has 10+ mentions.

http://bioconductor.org/packages/bioc/html/GeneAnswers.html

GeneAnswers provide an integrated tool for given genes biological or medical interpretation. It includes statistical test of given genes and specified categories. Microarray techniques have been widely employed in genomic scale studies for more than one decade. The standard analysis of microarray data is to filter out a group of genes from thousands of probes by certain statistical criteria. These genes are usually called significantly differentially expressed genes. Recently, next generation sequencing (NGS) is gradually adopted to explore gene transcription, methylation, etc. Also a gene list can be obtained by NGS preliminary data analysis. However, this type of information is not enough to understand the potential linkage between identified genes and interested functions. The integrated functional and pathway analysis with gene expression data would be very helpful for researchers to interpret the relationship between the identified genes and proposed biological or medical functions and pathways. The GeneAnswers package provides an integrated solution for a group of genes and specified categories (biological or medical functions, such as Gene Ontology, Disease Ontology, KEGG, etc) to reveal the potential relationship between them by means of statistical methods, and make user-friendly network visualization to interpret the results. Besides the package has a function to combine gene expression profile and category analysis together by outputting concept-gene cross tables, keywords query on NCBI Entrez Gene and application of human based Disease ontology analysis of given genes from other species can help people to understand or discover potential connection between genes and functions. Sponsors: This project was supported in part by Award Number UL1RR025741 from the National Center for Research Resources.

Proper citation: GeneAnswers (RRID:SCR_006498) Copy   


  • RRID:SCR_006494

    This resource has 10+ mentions.

http://www.plantontology.org

Ontology and database that links plant anatomy, morphology and growth and development to plant genomics data.Plant Ontology Consortium develops, curates and shares controlled vocabularies (ontologies) that describe plant structures and growth and developmental stages, providing semantic framework for meaningful cross species queries across databases. PO is under active development to expand to encompass terms and annotations from all plants.

Proper citation: Plant Ontology (RRID:SCR_006494) Copy   


  • RRID:SCR_006492

    This resource has 10+ mentions.

http://www.rarechromo.org/html/home.asp

Unique is a source of information and support to families and individuals affected by any rare chromosome disorder and to the professionals who work with them. Unique is a UK-based charity but welcomes members worldwide. Unique''''s Karyotype Database allows users to search the Registered Chromosome Disorders by chromosome, arm and disorder. You may have been given a diagnosis or indication of a chromosome disorder by a geneticist or other medical professional and they may have used a medical term which is unfamiliar to you. So to help you decide if Unique is the appropriate organization for you, we thought it would be useful to describe the different categories of rare chromosome disorder. Rare chromosome disorders can be grouped as structural disorders, numerical disorders and other miscellaneous disorders. Unique: * acts as an international family support group * produces a newsletter three times each year * works to promote awareness of rare chromosome disorders * arranges for families to assist in research into rare chromosome disorders * links families whose children have similar clinical and/or practical problems * works to ensure that the public at large are aware of rare chromosome disorders * works to raise funds to support the group activities and produce literature to make others more aware of our children''''s conditions * assists relevant research projects and the centralisation of information, at all times observing the need for total confidentiality * sets up local groups throughout the UK for families affected by any rare chromosome disorders and to give support and encouragement to each other * develops and maintains a comprehensive computerised database detailing the life-time effects of specific chromosome disorders on affected members * aims to hold an annual conference where families and relevant specialists can meet and be informed of the latest medical, technical and practical developments * liaises and works in co-operation, with other similar support groups and professionals world-wide for the benefit of families and individuals affected by rare chromosome disorders * ensures that hospitals, doctors, health authorities, genetic clinics and other professionals are aware of the group so that we may have early contact with families where required Membership of Unique is free but the group receives no government funding and is heavily reliant on donations and fundraising to continue its work. Please help us in whatever way you can.

Proper citation: Unique (RRID:SCR_006492) Copy   


http://www.LOVD.nl/

Freely available tool for Gene-centered collection and display of DNA variations. It also provides patient-centered data storage and storage of Next Generation Sequencing (NGS) data, even of variants outside of genes. Please note that LOVD provides a system for storage of information on genes and allelic variants. To obtain information about any genes or variants, do not download the LOVD package. This information should be obtained from the respective databases, http://www.lovd.nl/2.0/index_list.php In total: 2,507,027 variants (2,208,937 unique) in 170,935 individuals in 62619 genes in 88 LOVD installations. (Aug. 2013) LOVD 3.0 shared installation, http://databases.lovd.nl/shared/genes To maintain a high quality of the data stored, LOVD connects with various resources, like HGNC, NCBI, EBI and Mutalyzer. You can download LOVD in ZIP and GZIPped TARball formats.

Proper citation: Leiden Open Variation Database (RRID:SCR_006566) Copy   


http://inparanoid.sbc.su.se/cgi-bin/index.cgi

Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.

Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy   


http://scicrunch.org

THIS RESOURCE IS NO LONGER IN SERVICE, documented on August 27, 2019.

Database for those interested in the consequences of Factor VIII genetic variation at the DNA and protein level, it provides access to data on the molecular pathology of haemophilia A. The database presents a review of the structure and function of factor VIII and the molecular genetics of haemophilia A, a real time update of the biostatistics of each parameter in the database, a molecular model of the A1, A2 and A3 domains of the factor VIII protein (based on the crystal structure of caeruloplasmin) and a bulletin board for discussion of issues in the molecular biology of factor VIII. The database is completely updated with easy submission of point mutations, deletions and insertions via e-mail of custom-designed forms. A methods section devoted to mutation detection is available, highlighting issues such as choice of technique and PCR primer sequences. The FVIII structure section now includes a download of a FVIII A domain homology model in Protein Data Bank format and a multiple alignment of the FVIII amino-acid sequences from four species (human, murine, porcine and canine) in addition to the virtual reality simulations, secondary structural data and FVIII animation already available. Finally, to aid navigation across this site, a clickable roadmap of the main features provides easy access to the page desired. Their intention is that continued development and updating of the site shall provide workers in the fields of molecular and structural biology with a one-stop resource site to facilitate FVIII research and education. To submit your mutants to the Haemophilia A Mutation Database email the details. (Refer to Submission Guidelines)

Proper citation: HAMSTeRS - The Haemophilia A Mutation Structure Test and Resource Site (RRID:SCR_006883) Copy   


  • RRID:SCR_006919

    This resource has 1+ mentions.

http://sourceforge.net/p/fastsemsim/home/Home/

A package that implements several semantic similarity measures. It is both a library and an end-user application, featuring an intuitive graphical user interface (GUI). It has been implemented with the aim of being fast, expandable, and easy to use. It allows the user to work with the most updated version of GO database and customizable annotation corpora. It provides a set of logically-organized classes that can be easily exploited to both integrate semantic similarity into different analysis pipelines and extend the library with new measures. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FastSemSim (RRID:SCR_006919) Copy   


http://gtrnadb.ucsc.edu

This genomic tRNA database contains tRNA gene predictions made by the program tRNAscan-SE (Lowe & Eddy, Nucl Acids Res 25: 955-964, 1997) on complete or nearly complete genomes. Unless otherwise noted, all annotation is automated, and has not been inspected for agreement with published literature. Transfer RNAs (tRNAs) represent the single largest, best-understood class of non-protein coding RNA genes found in all living organisms. By far, the major source of new tRNAs is computational identification of genes within newly sequenced genomes. To organize the rapidly growing collection and enable systematic analyses, we created the Genomic tRNA Database (GtRNAdb). The web resource provides overview statistics of tRNA genes within each analyzed genome, including information by isotype and genetic locus, easily downloadable primary sequences, graphical secondary structures and multiple sequence alignments. Direct links for each gene to UCSC eukaryotic and microbial genome browsers provide graphical display of tRNA genes in the context of all other local genetic information. The database can be searched by primary sequence similarity, tRNA characteristics or phylogenetic group. Inevitably with automated sequence analysis, we find exceptions to general identification rules, isoacceptor type predictions (esp. due to variable post-transcriptional anticodon modification), and questionable tRNA identifications (due to pseudogenes, SINES, or other tRNA-derived elements). We attempt to document all cases we come across, and welcome feedback on new or unrecognized discrepancies.

Proper citation: GtRNAdb - Genomic tRNA Database (RRID:SCR_006939) Copy   


http://www.europhenome.org

Open source software system for capturing, storing and analyzing raw phenotyping data from SOPs contained in EMPReSS, it provides access to raw and annotated mouse phenotyping data generated from primary pipelines such as EMPReSSlim and secondary procedures from specialist centers. Mutants of interest can be identified by searching the gene or the predicted phenotype. You can also access phenotype data from the EMPReSSlim Pipeline for inbred mouse strains. Initially EuroPhenome was developed within the EUMORPHIA programme to capture and store pilot phenotyping data obtained on four background strains (C57BL/6J, C3H/HeBFeJ, BALB/cByJ and 129/SvPas). EUMORPHIA (European Union Mouse Research for Public Health and Industrial Applications) was a large project comprising of 18 research centers in 8 European countries, with the main focus of the project being the development of novel approaches in phenotyping, mutagenesis and informatics to improve the characterization of mouse models for understanding human molecular physiology and pathology. The current version of EuroPhenome is capturing data from the EUMODIC project as well as the WTSI MGP, HMGU GMC pipeline and the CMHD. EUMODIC is undertaking a primary phenotype assessment of up to 500 mouse mutant lines derived from ES cells developed in the EUCOMM project as well as other lines. Lines showing an interesting phenotype will be subject to a more in depth assessment. EUMODIC is building upon the comprehensive database of standardized phenotyping protocols, called EMPReSS, developed by the EUMORPHIA project. EUMODIC has developed a selection of these screens, called EMPReSSslim, to enable comprehensive, high throughput, primary phenotyping of large numbers of mice. Phenovariants are annotated using a automated pipeline, which assigns a MP term if the mutant data is statistically different to the baseline data. This data is shown in the Phenomap and the mine for a mutant tool. Please note that a statistically significant result and the subsequent MP annotation does not necessarily mean a true phenovariant. There are other factors that could cause this result that have not been accounted for in the analysis. It is the responsibility of the user to download the data and use their expert knowledge or further analysis to decide whether they agree or not. EuroPhenome is primarily based in the bioinformatics group at MRC Harwell. The development of EuroPhenome is in collaboration with the Helmholtz Zentrum Munchen, Germany, the Wellcome Trust Sanger Institute, UK and the Institut Clinique de la Souris, France.

Proper citation: Europhenome Mouse Phenotyping Resource (RRID:SCR_006935) Copy   


  • RRID:SCR_006937

    This resource has 10+ mentions.

http://autismkb.cbi.pku.edu.cn/

Genetic factors contribute significantly to ASD. AutismKB is an evidence-based knowledgebase of Autism spectrum disorder (ASD) genetics. The current version contains 2193 genes (99 syndromic autism related genes and 2135 non-syndromic autism related genes), 4617 Copy Number Variations (CNVs) and 158 linkage regions associated with ASD by one or more of the following six experimental methods: # Genome-Wide Association Studies (GWAS); # Genome-wide CNV studies; # Linkage analysis; # Low-scale genetic association studies; # Expression profiling; # Other low-scale gene studies. Based on a scoring and ranking system, 99 syndromic autism related genes and 383 non-syndromic autism related genes (434 genes in total) were designated as having high confidence. Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a prevalence of 1.0-2.6%. The three core symptoms of ASD are: # impairments in reciprocal social interaction; # communication impairments; # presence of restricted, repetitive and stereotyped patterns of behavior, interests and activities.

Proper citation: AutismKB (RRID:SCR_006937) Copy   


http://redfly.ccr.buffalo.edu

Curated collection of known Drosophila transcriptional cis-regulatory modules (CRMs) and transcription factor binding sites (TFBSs). Includes experimentally verified fly regulatory elements along with their DNA sequence, associated genes, and expression patterns they direct. Submission of experimentally verified cis-regulatory elements that are not included in REDfly database are welcome.

Proper citation: REDfly Regulatory Element Database for Drosophilia (RRID:SCR_006790) Copy   


  • RRID:SCR_007147

    This resource has 1+ mentions.

http://www.nervenet.org/main/dictionary.html

A mouse-related portal of genomic databases and tables of mouse brain data. Most files are intended for you to download and use on your own personal computer. Most files are available in generic text format or as FileMaker Pro databases. The server provides data extracted and compiled from: The 2000-2001 Mouse Chromosome Committee Reports, Release 15 of the MIT microsatellite map (Oct 1997), The recombinant inbred strain database of R.W. Elliott (1997) and R. W. Williams (2001), and the Map Manager and text format chromosome maps (Apr 2001). * LXS genotype (Excel file): Updated, revised positions for 330 markers genotyped using a panel of 77 LXS strain. * MIT SNP DATABASE ONLINE: Search and sort the MIT Single Nucleotide Polymorphism (SNP) database ONLINE. These data from the MIT-Whitehead SNP release of December 1999. * INTEGRATED MIT-ROCHE SNP DATABASE in EXCEL and TEXT FORMATS (1-3 MB): Original MIT SNPs merged with the new Roche SNPs. The Excel file has been formatted to illustrate SNP haplotypes and genetic contrasts. Both files are intended for statistical analyses of SNPs and can be used to test a method outlined in a paper by Andrew Grupe, Gary Peltz, and colleagues (Science 291: 1915-1918, 2001). The Excel file includes many useful equations and formatting that will help in navigating through this large database and in testing the in silico mapping method. * Use of inbred strains for the study of individual differences in pain related phenotypes in the mouse: Elissa J. Chesler''s 2002 dissertation, discussing issues relevant to the integration of genomic and phenomic data from standard inbred strains including genetic interactions with laboratory environmental conditions and the use of various in silico inbred strain haplotype based mapping algorithms for QTL analysis. * SNP QTL MAPPER in EXCEL format (572 KB, updated January 2002 by Elissa Chesler): This Excel workbook implements the Grupe et al. mapping method and outputs correlation plots. The main spreadsheet allows you to enter your own strain data and compares them to haplotypes. Be very cautious and skeptical when using this spreadsheet and the technique. Read all of the caveates. This excel version of the method was developed by Elissa Chesler. This updated version (Jan 2002) handles missing data. * MIT SNP Database (tab-delimited text format): This file is suitable for manipulation in statistics and spreadsheet programs (752 KB, Updated June 27, 2001). Data have been formatted in a way that allows rapid acquisition of the new data from the Roche Bioscience SNP database. * MIT SNP Database (FileMaker 5 Version): This is a reformatted version of the MIT Single Nucleotide Polymorphism (SNP) database in FileMaker 5 format. You will need a copy of this application to open the file (Mac and Windows; 992 KB. Updated July 13, 2001 by RW). * Gene Mapping and Map Manager Data Sets: Genetic maps of mouse chromosomes. Now includes a 10th generation advanced intercross consisting of 500 animals genetoyped at 340 markers. Lots of older files on recombinant inbred strains. * The Portable Dictionary of the Mouse Genome, 21,039 loci, 17,912,832 bytes. Includes all 1997-98 Chromosome Committee Reports and MIT Release 15. * FullDict.FMP.sit: The Portable Dictionary of the Mouse Genome. This large FileMaker Pro 3.0/4.0 database has been compressed with StuffIt. The Dictionary of the Mouse Genome contains data from the 1997-98 chromosome committee reports and MIT Whitehead SSLP databases (Release 15). The Dictionary contains information for 21,039 loci. File size = 4846 KB. Updated March 19, 1998. * MIT Microsatellite Database ONLINE: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. ONLINE. Updated July 12, 2001. * MIT Microsatellite Database: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. File size = 3.0 MB. Updated March 19, 1998. * OurPrimersDB: A small database of primers. Download this database if you are using numerous MIT primers to map genes in mice. This database should be used in combination with the MITDB as one part of a relational database. File size = 149 KB. Updated March 19, 1998. * Empty copy (clone) of the Portable Dictionary in FileMaker Pro 3.0 format. Download this file and import individual chromosome text files from the table into the database. File size = 231 KB. Updated March 19, 1998. * Chromosome Text Files from the Dictionary: The table lists data on gene loci for individual chromosomes.

Proper citation: Mouse Genome Databases (RRID:SCR_007147) Copy   


  • RRID:SCR_007079

    This resource has 1+ mentions.

http://www.genoscope.cns.fr/externe/tetraodon/

The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.

Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy   


http://medgen.ugent.be/rtprimerdb/

Database for primer and probe sequences used in real-time PCR assays employing popular chemistries (SYBR Green I, Taqman, Hybridization Probes, Molecular Beacon) to prevent time-consuming primer design and experimental optimization, and to introduce a certain level of uniformity and standardization among different laboratories. Researchers are encouraged to submit their validated primer and probe sequence, so that other users can benefit from their expertise. The database can be queried using the official gene name or symbol, Entrez or Ensembl Gene identifier, SNP identifier, or oligonucleotide sequence. Different options make it possible to restrict a query to a particular application (Gene Expression Quantification/Detection, DNA Copy Number Quantification/Detection, SNP Detection, Mutation Analysis, Fusion Gene Quantification/Detection, Chromatin immunoprecipitation (ChIP)), organism (Human, Mouse, Rat, and others) or detection chemistry.

Proper citation: RTPrimerDB- The Real-Time PCR and Probe Database (RRID:SCR_007106) Copy   


http://www.chr7.org

Database containing the DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented; the most up to date collation of sequence, gene, and other annotations from all databases (eg. Celera published, NCBI, Ensembl, RIKEN, UCSC) as well as unpublished data. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. The objective of this project is to generate a comprehensive description of human chromosome 7 to facilitate biological discovery, disease gene research and medical genetic applications. There are over 360 disease-associated genes or loci on chromosome 7. A major challenge ahead will be to represent chromosome alterations, variants, and polymorphisms and their related phenotypes (or lack thereof), in an accessible way. In addition to being a primary data source, this site serves as a weighing station for testing community ideas and information to produce highly curated data to be submitted to other databases such as NCBI, Ensembl, and UCSC. Therefore, any useful data submitted will be curated and shown in this database. All Chromosome 7 genomic clones (cosmids, BACs, YACs) listed in GBrowser and in other data tables are freely distributed.

Proper citation: Chromosome 7 Annotation Project (RRID:SCR_007134) Copy   


http://www.genes2cognition.org/

A neuroscience research program that studies genes, the brain and behavior in an integrated manner, established to elucidate the molecular mechanisms of learning and memory, and shed light on the pathogenesis of disorders of cognition. Central to G2C investigations is the NMDA receptor complex (NRC/MASC), that is found at the synapses in the central nervous system which constitute the functional connections between neurons. Changes in the receptor and associated components are thought to be in a large part responsible for the phenomenon of synaptic plasticity, that may underlie learning and memory. G2C is addressing the function of synapse proteins using large scale approaches combining genomics, proteomics and genetic methods with electrophysiological and behavioral studies. This is incorporated with computational models of the organization of molecular networks at the synapse. These combined approaches provide a powerful and unique opportunity to understand the mechanisms of disease genes in behavior and brain pathology as well as provide fundamental insights into the complexity of the human brain. Additionally, Genes to Cognition makes available its biological resources, including gene-targeting vectors, ES cell lines, antibodies, and transgenic mice, generated for its phenotyping pipeline. The resources are freely-available to interested researchers.

Proper citation: Genes to Cognition: Neuroscience Research Programme (RRID:SCR_007121) Copy   


https://mctfr.psych.umn.edu/

Composed of many projects, including the Minnesota Twin Family Study (MTFS) and The Sibling Interaction and Behavior Study (SIBS), this research center seeks to identify genetic and environmental influences on development and psychological traits. Both projects are longitudinal research studies including twins, siblings, and parents. Over 9800 individuals have contributed to these exciting projects! By studying twins and siblings and their families, we can estimate how genes and environment interact to influence character, strengths, vulnerabilities and values. Participants in the MTFS include families with same-sex identical or fraternal twins who were born in Minnesota. The SIBS study is comprised of adoptive and biological siblings and their parents. Most participants partake in day-long visits to the MCTFR, and due to the longitudinal nature of our projects, they return every 3-4 years for follow-up visits.

Proper citation: Minnesota Center for Twin and Family Research (RRID:SCR_006948) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X