Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 31 showing 601 ~ 620 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection

http://www.gudmap.org

Project aggregates and provides experimental gene expression data from genito-urinary system. International consortium providing molecular atlas of gene expression for developing organs of GenitoUrinary (GU) tract. Mouse strains to facilitate developmental and functional studies within GU system. Experimental protocols and standard specifications. Tutorials describing GU organogenesis and primary data via database. Data are from large-scale in situ hybridization screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of developing mouse genitourinary (GU) system.

Proper citation: GenitoUrinary Development Molecular Anatomy Project (RRID:SCR_001554) Copy   


http://www.le.ac.uk/genetics/genie/vgec/index.html

Hub of evaluated genetics-related teaching resources for teachers and learners in schools and higher education, health professionals and the general public. Suggest or submit a learning resource to the VGEC. Resources include: * simple experiments suitable for all ages * tutorial material * videos on useful techniques * current and relevant links to other evaluated resources The Virtual Genetics Education Centre (VGEC) * Provides information and genetics education resources for higher education, colleges, schools, health professionals and the general public. * Encourages collaboration in the development, evaluation and sharing of genetics education resources * provides links to, and evaluates, sources of information and educational material about genetics. * Explores innovative approaches to teaching and learning in genetics, such as the SWIFT project for example where Second Life is being used to teach some aspects of genetics in a virtual laboratory.

Proper citation: Virtual Genetics Education Centre (RRID:SCR_001958) Copy   


  • RRID:SCR_001993

    This resource has 100+ mentions.

http://www.ebi.ac.uk/biomodels-main/

Repository of mathematical models of biological and biomedical systems. Hosts selection of existing literature based physiologically and pharmaceutically relevant mechanistic models in standard formats. Features programmatic access via Web Services. Each model is curated to verify that it corresponds to reference publication and gives proper numerical results. Curators also annotate components of models with terms from controlled vocabularies and links to other relevant data resources allowing users to search accurately for models they need. Models can be retrieved in SBML format and import/export facilities are being developed to extend spectrum of formats supported by resource.

Proper citation: BioModels (RRID:SCR_001993) Copy   


http://www.sanbi.ac.za/resources/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23, 2022. The South African National Bioinformatics Institute delivers biomedical discovery appropriate to both international and African context. Researchers at SANBI perform the highest level of research and provide excellence in education. Research at SANBI has set well recognized milestones in the field of computational biology. The tools and techniques used have not only been developed but also implemented across heterogeneous domains of advanced research. Local and international efforts have driven our discoveries. Until recently, the core of SANBIs research has focused upon gene expression biology. Methods developed and applied at SANBI revolve around a greater understanding of the underlying causes of diseases. SANBI approaches the problem by comparison of genes, genomes and transcriptomes. It uses computational gene expression biology to create novel biological insights and to provide biomarkers for experimental validation. It also performs analysis of human genome variation, transcriptional diversity on both the expression and splicing level and the unravelling of transcriptional regulatory networks. Resources - Hinv, STACKdb, Malaria resources and Trypanosome databases are available for on-line seaching. - SANBI offers WCD, STACKdb, stackPACK and eVOC and the eVOKE viewer as tools that can be downloaded. Sponsors: SANBI receives funding and support from a range of organisations in South Africa and Internationally. Organisations currently supporting SANBI include: South Africa * South African Medical Research Council * South African AIDS Vaccine Initiative * National Bioinformatics Network * National Research Foundation * Claude Leon Foundation * International Business Machines Inc. Europe * European Unions 6th Framework Programme * World Health Organization USA * US National Institutes of Health * Fogarty International Centre * Ludwig Institute for Cancer Research

Proper citation: South African National Bioinformatics Institute: Resources (RRID:SCR_001867) Copy   


http://pga.gs.washington.edu

The SeattleSNPs PGA is focused on identifying, genotyping, and modeling the associations between single nucleotide polymorphisms (SNPs) in candidate genes and pathways that underlie inflammatory responses in humans. SeattleSNPs is focused on variation analysis in genes related to the inflammatory response. These gene targets are found in specific pathways and from interacting molecules contributing to this response. Available Resources: - Baseline assembled and complete genomic sequence and chromosomal location for candidate gene targets - Mapping of exon and repeat structure for candidate genes - Amplification primers and conditions - SNPs mapped by location in gene structure - SNPs with immediate surrounding sequence for genotype assay design - Genotypes and relative allele frequencies of the SNPs - Special features of SNPs - location (5', coding, etc.), amino acid substitutions, recurrent variation - Manuals on all protocols, data analysis procedures, and use of software tools - Workshop on genetic variation analysis and a gene submission program for variation analysis Sponsors: SeattleSNPs is funded as part of the National Heart Lung and Blood Institute's (NHLBI) Programs for Genomic Applications (PGA).

Proper citation: SeattleSNPs - Variation Discovery Resource (RRID:SCR_001859) Copy   


  • RRID:SCR_001890

http://www.dkfz.de/en/mol_embryology/axeldb.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 21, 2011. Database focusing on gene expression in the frog Xenopus laevis, it is the web companion to the research papers describing a large-scale in situ hybridization screening in Xenopus embryos. The goals of this large-scale in situ screen project are to identify genes by the characterization of their expression pattern, to partially sequence the corresponding cDNAs and to maintain a database collecting the results.

Proper citation: Axel Database (RRID:SCR_001890) Copy   


http://www.doe-mbi.ucla.edu/

The UCLA-DOE Institute for Genomics and Proteomics carries out research in bioenergy, structural biology, genomics and proteomics, consistent with the research mission of the United States Department of Energy. Major interests of the 12 Principal Investigators and 9 Associate Members include systems approaches to organisms, structural biology, bioinformatics, and bioenergetic systems. The Institute sponsors 5 Core Technology Centers, for X-ray and NMR structural determination, bioinformatics and computation, protein expression and purification, and biochemical instrumentation. Services offered by this Institute: - Databases: * DIP (The Database of Interacting Proteins): The DIPTM database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. * ProLinks Database of Functional Linkages: The Prolinks database is a collection of inference methods used to predict functional linkages between proteins. These methods include the Phylogenetic Profile method which uses the presence and absence of proteins across multiple genomes to detect functional linkages; the Gene Cluster method, which uses genome proximity to predict functional linkage; Rosetta Stone, which uses a gene fusion event in a second organism to infer functional relatedness; and the Gene Neighbor method, which uses both gene proximity and phylogenetic distribution to infer linkage. - Data-to-Structure Servers: * SAVEs Structure Verification Server * Merohedral Twinning Test Server * SER Surface Entropy Reduction Server * VERIFY3D Structure Verification Server * ERRAT Structure Verification Server - Structure-to-Function Servers: * ProKnow Protein Functionator * Hot Patch Functional Site Locator

Proper citation: University of California at Los Angeles - Department of Energy Institute for Genomics and Proteomics (RRID:SCR_001921) Copy   


  • RRID:SCR_001757

    This resource has 10000+ mentions.

Issue

http://www.nitrc.org/projects/plink

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

Proper citation: PLINK (RRID:SCR_001757) Copy   


http://meme-suite.org/

Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.

Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy   


  • RRID:SCR_002143

    This resource has 1000+ mentions.

http://amigo.geneontology.org/

Web tool to search, sort, analyze, visualize and download data of interest. Along with providing details of the ontologies, gene products and annotations, features a BLAST search, Term Enrichment and GO Slimmer tools, the GO Online SQL Environment and a user help guide.Used at the Gene Ontology (GO) website to access the data provided by the GO Consortium. Developed and maintained by the GO Consortium.

Proper citation: AmiGO (RRID:SCR_002143) Copy   


  • RRID:SCR_002264

    This resource has 10+ mentions.

https://ostr.ccr.cancer.gov/resources/provider_details/nci-mouse-repository

The NCI Mouse Repository cryoarchives and distributes strains of genetically engineered mice that are of immediate interest to the cancer research community. These are either gene-targeted or transgenic mice that display a cancer-related phenotype, or tool strains (e.g., cre transgenics) that can be used to develop new cancer models. You do not have to be a member of the NCI Mouse Repository or a recipient of NCI funding to have your mouse model distributed through the NCI Mouse Repository. NCI Mouse Repository strains are maintained as live colonies or cryoarchived as frozen embryos, depending on demand. Up to three breeder pairs may be ordered from live colonies. Cryoarchived strains are supplied as frozen embryos or recovery of live mice by the NCI Mouse Repository may be requested.

Proper citation: NCI Mouse Repository (RRID:SCR_002264) Copy   


  • RRID:SCR_002142

    This resource has 500+ mentions.

https://www.snpstats.net/

A web-based application designed from a genetic epidemiology point of view to analyze association studies using single nucleotide polymorphisms (SNPs). For each selected SNP, you will receive: * Allele and genotype frequencies * Test for Hardy-Weinberg equilibrium * Analysis of association with a response variable based on linear or logistic regression * Multiple inheritance models: co-dominant, dominant, recessive, over-dominant and additive * Analysis of interactions (gene-gene or gene-environment) If multiple SNPs are selected: * Linkage disequilibrium statistics * Haplotype frequency estimation * Analysis of association of haplotypes with the response * Analysis of interactions (haplotypes-covariate)

Proper citation: SNPSTATS (RRID:SCR_002142) Copy   


  • RRID:SCR_002148

    This resource has 100+ mentions.

http://compbio.dfci.harvard.edu/tgi/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.The goal of The Gene Index Project is to use the available Expressed Sequence Transcript (EST) and gene sequences, along with the reference genomes wherever available, to provide an inventory of likely genes and their variants and to annotate these with information regarding the functional roles played by these genes and their products. The promise of genome projects has been a complete catalog of genes in a wide range of organisms. While genome projects have been successful in providing reference genome sequences, the problem of finding genes and their variants in genomic sequence remains an ongoing challenge. TGI has created an inventory that contains genes and their variants together with description. In addition, this resource is attempting to use these catalogs to find links between genes and pathways in different species and to provide lists of features within completed genomes that can aid in the understanding of how gene expression is regulated. DATABASES *Eukaryotic Gene Orthologues (formerly known as TOGA - TIGR Orthologous Gene Alignment): Eukaryotic Gene Orthologues (EGO) at DFGI are generated by pair-wise comparison between the Tentative Consensus (TC) sequences that comprise the Dana Farber Gene Indices from individual organisms. The reciprocal pairs of the best match were clustered into individual groups and multiple sequence alignments were displayed for each group. *GeneChip Oncology Database (GCOD):Cancer gene expression database is a collection of publicly available microarray expression data on Affymetrix GeneChip Arrays related to human cancers. Currently only datasets with available raw data (Affymetrix .CEL files) are processed. All processed datasets were subjected to extensive manual curation, uniform processing and consistent quality control. You can browse the experiments in our collection, perform statistical analysis, and download processed data; or to search gene expression profiles using Entrez gene symbol, Unigene ID, or Affymetrix probeset ID. *Gene Indices: As of July 1, 2008, there are 111 publicly available gene indices. They are separated into 4 categories for better organization and easier access. Animal: 41, Plant: 45, Protist: 15, Fungal: 10 *Genomic Maps: Human, mouse, rat, chicken, drosophila melanogaster, zebrafish, mosquito, caenorhabditis elegans, Arabidopsis thaliana, rice, yeast, fission yeast Dana-Farber Cancer Institute (DFCI) Gene Indices Software Tools: *TGI Clustering tools (TGICL): a software system for fast clustering of large EST datasets. *GICL: this package contains the scripts and all the necessary pre-compiled binaries for 32bit Linux systems. *clview: an assembly file viewer. *SeqClean:a script for automated trimming and validation of ESTs or other DNA sequences by screening for various contaminants, low quality and low-complexity sequences. *cdbfasta/cdbyank: fast indexing/retrieval of fasta records from flat file databases. *DAS/XML Genomic Viewer The Genomic viewer borrows modules from http://www.biodas.org (lstein (at) cshl.org) & http://webreference.com.

Proper citation: Gene Index Project (RRID:SCR_002148) Copy   


  • RRID:SCR_002047

    This resource has 100+ mentions.

http://www.aspgd.org/

Database of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus including information about genes and proteins of Aspergillus nidulans and Aspergillus fumigatus; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Sgenus species. Also available are Gene Ontology (GO) and community resources. Based on the Candida Genome Database, the Aspergillus Genome Database is a resource for genomic sequence data and gene and protein information for Aspergilli. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). Search options allow you to: *Search AspGD database using keywords. *Find chromosomal features that match specific properties or annotations. *Find AspGD web pages using keywords located on the page. *Find information on one gene from many databases. *Search for keywords related to a phenotype (e.g., conidiation), an allele (such as veA1), or an experimental condition (e.g., light). Analysis and Tools allow you to: *Find similarities between a sequence of interest and Aspergillus DNA or protein sequences. *Display and analyze an Aspergillus sequence (or other sequence) in many ways. *Navigate the chromosomes set. View nucleotide and protein sequence. *Find short DNA/protein sequence matches in Aspergillus. *Design sequencing and PCR primers for Aspergillus or other input sequences. *Display the restriction map for a Aspergillus or other input sequence. *Find similarities between a sequence of interest and fungal nucleotide or protein sequences. AspGD welcomes data submissions.

Proper citation: ASPGD (RRID:SCR_002047) Copy   


http://microbes.ucsc.edu/cgi-bin/hgGateway?db=neisMeni_MC58_1

Portal contains detailed information for Neisseria meningitidis MC58. Information include DNA molecule summary, primary annotation summary, and taxonomy. It is a tool that allows the researcher to access all of the bacterial genome sequences completed to date. Users may access information on all of the bacterial genomes or any subset of them. Information in the website about its DNA molecule includes: total number of DNA molecules, total size of all DNA molecules, number of primary annotation coding bases, and number of G + C bases. Its primary annotation summary include: total genes, protein coding genes, tRNA genes, and rRNA genes. Sponsors: The CMR was previously funded by two grants, one from the U.S. Department of Energy (DOE) and one from the National Science Foundation (NSF). It is currently partially funded by a Microbial Sequence Center (MSC) grant from the National Institute of Allergy and Infectious Diseases (NIAID)

Proper citation: Neisseria meningitidis MC58 Genome Page (RRID:SCR_002200) Copy   


http://www.ncbi.nlm.nih.gov/HTGS/

Database of high-throughput genome sequences from large-scale genome sequencing centers, including unfinished and finished sequences. It was created to accommodate a growing need to make unfinished genomic sequence data rapidly available to the scientific community in a coordinated effort among the International Nucleotide Sequence databases, DDBJ, EMBL, and GenBank. Sequences are prepared for submission by using NCBI's software tools Sequin or tbl2asn. Each center has an FTP directory into which new or updated sequence files are placed. Sequence data in this division are available for BLAST homology searches against either the htgs database or the month database, which includes all new submissions for the prior month. Unfinished HTG sequences containing contigs greater than 2 kb are assigned an accession number and deposited in the HTG division. A typical HTG record might consist of all the first-pass sequence data generated from a single cosmid, BAC, YAC, or P1 clone, which together make up more than 2 kb and contain one or more gaps. A single accession number is assigned to this collection of sequences, and each record includes a clear indication of the status (phase 1 or 2) plus a prominent warning that the sequence data are unfinished and may contain errors. The accession number does not change as sequence records are updated; only the most recent version of a HTG record remains in GenBank.

Proper citation: High Throughput Genomic Sequences Division (RRID:SCR_002150) Copy   


http://cibex.nig.ac.jp/data/

Gene expression database system in compliance with MIAME, which is a standard that the MGED Society has developed for comparing and data produced in microarray experiments at different laboratories worldwide. It serves as a public repository for a wide range of high-throughput experimental data in gene expression research, including microarray-based experiments measuring mRNA, serial analysis of gene expression (SAGE tags), and mass spectrometry proteomic data.

Proper citation: CIBEX: Center for Information Biology gene EXpression database (RRID:SCR_002307) Copy   


http://ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019.BGMUT was database that provided publicly accessible platform for DNA sequences and curated set of blood mutation information. Data Archive are available at ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive.

Proper citation: Blood Group Antigen Gene Mutation Database (RRID:SCR_002297) Copy   


http://www.ark-genomics.org/

Portal for studies of genome structure and genetic variation, gene expression and gene function. Provides services including DNA sequencing of model and non-model genomes using both Next Generation and Sanger sequencing , Gene expression analysis using both microarrays and Next Generation Sequencing, High throughput genotyping of SNP and copy number variants, Data collection and analysis supported in-house high performance computing facilities and expertise, Extensive EST clone collections for a number of animal species, all of commercially available microarray tools from Affymetrix, Illumina, Agilent and Nimblegen, Parentage testing using microsatellites and smaller SNP panels. ARK-Genomics has developed network of researchers whom they support through each stage of their genomics research, from grant application, experimental design and technology selection, performing wet laboratory protocols, through to analysis of data often in conjunction with commercial partners.

Proper citation: ARK-Genomics: Centre for Functional Genomics (RRID:SCR_002214) Copy   


  • RRID:SCR_002117

    This resource has 10+ mentions.

http://www.proteinlounge.com

Complete siRNA target database, complete Peptide-Antigen target database and a Kinase-Phosphatase database. They have also developed the largest database of illustrated signal transduction pathways, which are interconnected to their extensive protein database and online gene / protein analysis tools. The interactive web-based databases and software help life-scientists understand the complexity of systems biology. Systems biology efforts focus on understanding cellular networks, protein interactions involved in cell signaling, mechanisms of cell survival and apoptosis leading to development or identification of drug candidates against a variety of diseases. In the post-genomic era, one of the major concerns for life-science researchers is the organization of gene / protein data. Protein Lounge has met this concern by organizing all necessary data about genes / proteins into one portal.

Proper citation: Protein Lounge (RRID:SCR_002117) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X