Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 31 showing 601 ~ 620 out of 1,647 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_013023

    This resource has 10+ mentions.

http://www.benoslab.pitt.edu/comir/

Data analysis service that predicts whether a given mRNA is targeted by a set of miRNAs. ComiR uses miRNA expression to improve and combine multiple miRNA targets for each of the four prediction algorithms: miRanda, PITA, TargetScan and mirSVR. The composite scores of the four algorithms are then combined using a support vector machine trained on Drosophila Ago1 IP data.

Proper citation: ComiR (RRID:SCR_013023) Copy   


  • RRID:SCR_010833

    This resource has 10+ mentions.

http://tools.genxpro.net/omiras/

A web server for the annotation, comparison and visualization of interaction networks of non-coding RNAs derived from small RNA-Sequencing experiments of two different conditions.

Proper citation: omiRas (RRID:SCR_010833) Copy   


  • RRID:SCR_010777

    This resource has 1000+ mentions.

http://www.mutationtaster.org/

Evaluates disease-causing potential of sequence alterations.

Proper citation: MutationTaster (RRID:SCR_010777) Copy   


  • RRID:SCR_012007

http://www.genoread.org/

A sequence verification pipeline where users can submit trace files to verify if a clone''s physical sequence matches its reference sequence.

Proper citation: GenoREAD (RRID:SCR_012007) Copy   


  • RRID:SCR_013346

http://zope.bioinfo.cnio.es/plan2l/plan2l.html

A web-based online search system that integrates text mining and information extraction techniques to access systematically information useful for analyzing genetic, cellular and molecular aspects of the plant model organism Arabidopsis thaliana. The system facilitates a more efficient retrieval of information relevant to heterogeneous biological topics, from implications in biological relationships at the level of protein interactions and gene regulation, to sub-cellular locations of gene products and associations to cellular and developmental processes, i.e. cell cycle, flowering, root, leaf and seed development. Beyond single entities, also predefined pairs of entities can be provided as queries for which literature-derived relations together with textual evidences are returned.

Proper citation: PLAN2L (RRID:SCR_013346) Copy   


  • RRID:SCR_013352

    This resource has 1+ mentions.

http://dsap.cgu.edu.tw/

A web server designed to provide a total solution to analyze small RNAs sequencing data generated by SOLEXA., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: DSAP (RRID:SCR_013352) Copy   


  • RRID:SCR_003133

    This resource has 10+ mentions.

https://rostlab.org/owiki/index.php/PredictNLS

Software automated tool for analysis and determination of Nuclear Localization Signals (NLS). Predicts that your protein is nuclear or finds out whether your potential NLS is found in our database. The program also compiles statistics on the number of nuclear/non-nuclear proteins in which your potential NLS is found. Finally, proteins with similar NLS motifs are reported, and the experimental paper describing the particular NLS are given.

Proper citation: PredictNLS (RRID:SCR_003133) Copy   


  • RRID:SCR_003249

    This resource has 1+ mentions.

http://www.ichip.de/software/SplicingCompass.html

Software for detection of differential splicing between two different conditions using RNA-Seq data.

Proper citation: SplicingCompass (RRID:SCR_003249) Copy   


  • RRID:SCR_003279

    This resource has 50+ mentions.

https://bitbucket.org/dranew/defuse

Software package for gene fusion discovery using RNA-Seq data. It uses clusters of discordant paired end alignments to inform a split read alignment analysis for finding fusion boundaries.

Proper citation: deFuse (RRID:SCR_003279) Copy   


  • RRID:SCR_003151

    This resource has 10+ mentions.

http://abi.inf.uni-tuebingen.de/Services/MultiLoc2

An extensive high-performance subcellular protein localization prediction system that incorporates phylogenetic profiles and Gene Ontology terms to yield higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. A downloadable version of MultiLoc2 for local use is also available.

Proper citation: MultiLoc (RRID:SCR_003151) Copy   


  • RRID:SCR_003139

    This resource has 10000+ mentions.

http://primer3.ut.ee

Tool used to design PCR primers from DNA sequence - often in high-throughput genomics applications. It does everything from mispriming libraries to sequence quality data to the generation of internal oligos.

Proper citation: Primer3 (RRID:SCR_003139) Copy   


  • RRID:SCR_003212

    This resource has 100+ mentions.

http://phenome.jax.org/

Database enables integration of genomic and phenomic data by providing access to primary experimental data, data collection protocols and analysis tools. Data represent behavioral, morphological and physiological disease-related characteristics in naive mice and those exposed to drugs, environmental agents or other treatments. Collaborative standardized collection of measured data on laboratory mouse strains to characterize them in order to facilitate translational discoveries and to assist in selection of strains for experimental studies. Includes baseline phenotype data sets as well as studies of drug, diet, disease and aging effect., protocols, projects and publications, and SNP, variation and gene expression studies. Provides tools for online analysis. Data sets are voluntarily contributed by researchers from variety of institutions and settings, or retrieved by MPD staff from open public sources. MPD has three major types of strain-centric data sets: phenotype strain surveys, SNP and variation data, and gene expression strain surveys. MPD collects data on classical inbred strains as well as any fixed-genotype strains and derivatives that are openly acquirable by the research community. New panels include Collaborative Cross (CC) lines and Diversity Outbred (DO) populations. Phenotype data include measurements of behavior, hematology, bone mineral density, cholesterol levels, endocrine function, aging processes, addiction, neurosensory functions, and other biomedically relevant areas. Genotype data are primarily in the form of single-nucleotide polymorphisms (SNPs). MPD curates data into a common framework by standardizing mouse strain nomenclature, standardizing units (SI where feasible), evaluating data (completeness, statistical power, quality), categorizing phenotype data and linking to ontologies, conforming to internal style guides for titles, tags, and descriptions, and creating comprehensive protocol documentation including environmental parameters of the test animals. These elements are critical for experimental reproducibility.

Proper citation: Mouse Phenome Database (MPD) (RRID:SCR_003212) Copy   


http://dip.doe-mbi.ucla.edu/

Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.

Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy   


  • RRID:SCR_003168

    This resource has 1+ mentions.

http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/

Software package for the statistical language R, devoted to the analysis of next generation short read data of RNA-seq transcripts. It provides predictions of alternative exons in a single condition/cell sample, predictions of differential alternative exons between two conditions/cell samples, and quantification of alternative splice forms in a single condition/cell sample.

Proper citation: Solas (RRID:SCR_003168) Copy   


  • RRID:SCR_003352

    This resource has 10+ mentions.

http://pir.georgetown.edu/pirwww/dbinfo/pirsf.shtml

A SuperFamily classification system, with rules for functional site and protein name, to facilitate the sensible propagation and standardization of protein annotation and the systematic detection of annotation errors. The PIRSF concept is being used as a guiding principle to provide comprehensive and non-overlapping clustering of UniProtKB sequences into a hierarchical order to reflect their evolutionary relationships. The PIRSF classification system is based on whole proteins rather than on the component domains; therefore, it allows annotation of generic biochemical and specific biological functions, as well as classification of proteins without well-defined domains. There are different PIRSF classification levels. The primary level is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). At a lower level are the subfamilies which are clusters representing functional specialization and/or domain architecture variation within the family. Above the homeomorphic level there may be parent superfamilies that connect distantly related families and orphan proteins based on common domains. Because proteins can belong to more than one domain superfamily, the PIRSF structure is formally a network. The FTP site provides free download for PIRSF.

Proper citation: PIRSF (RRID:SCR_003352) Copy   


  • RRID:SCR_003510

    This resource has 10+ mentions.

http://www.cellimagelibrary.org/

Freely accessible, public repository of vetted and annotated microscopic images, videos, and animations of cells from a variety of organisms, showcasing cell architecture, intracellular functionalities, and both normal and abnormal processes. Explore by Cell Process, Cell Component, Cell Type or Organism. The Cell includes images acquired from historical and modern collections, publications, and by recruitment.

Proper citation: Cell Image Library (CIL) (RRID:SCR_003510) Copy   


http://www.ebi.ac.uk/pride/

Centralized, standards compliant, public data repository for proteomics data, including protein and peptide identifications, post-translational modifications and supporting spectral evidence. Originally it was developed to provide a common data exchange format and repository to support proteomics literature publications. This remit has grown with PRIDE, with the hope that PRIDE will provide a reference set of tissue-based identifications for use by the community. The future development of PRIDE has become closely linked to HUPO PSI. PRIDE encourages and welcomes direct user submissions of protein and peptide identification data to be published in peer-reviewed publications. Users may Browse public datasets, use PRIDE BioMart for custom queries, or download the data directly from the FTP site. PRIDE has been developed through a collaboration of the EMBL-EBI, Ghent University in Belgium, and the University of Manchester.

Proper citation: Proteomics Identifications (PRIDE) (RRID:SCR_003411) Copy   


  • RRID:SCR_003485

    This resource has 1000+ mentions.

http://www.reactome.org

Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.

Proper citation: Reactome (RRID:SCR_003485) Copy   


  • RRID:SCR_003487

    This resource has 10+ mentions.

http://cng.gmu.edu:8080/Lm

A freely available software tool available for the Windows and Linux platform, as well as the Online version Applet, for the analysis, comparison and search of digital reconstructions of neuronal morphologies. For the quantitative characterization of neuronal morphology, LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions, including: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of 20 neurons. The tool is available for either online use on any Java-enabled browser and platform or may be downloaded for local execution under Windows and Linux.

Proper citation: L-Measure (RRID:SCR_003487) Copy   


  • RRID:SCR_003765

    This resource has 10+ mentions.

http://www.etriks.org/

Research informatics and analytics platform for the IMI OncoTrack consortium.

Proper citation: eTRIKS (RRID:SCR_003765) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X