Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Gene expression database system in compliance with MIAME, which is a standard that the MGED Society has developed for comparing and data produced in microarray experiments at different laboratories worldwide. It serves as a public repository for a wide range of high-throughput experimental data in gene expression research, including microarray-based experiments measuring mRNA, serial analysis of gene expression (SAGE tags), and mass spectrometry proteomic data.
Proper citation: CIBEX: Center for Information Biology gene EXpression database (RRID:SCR_002307) Copy
Maintains and provides archival, retrieval and analytical resources for biological information. Central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: DDBJ Omics Archive and BioProject. DOR is archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides organizational framework to access metadata about research projects and data from projects that are deposited into different databases.
Proper citation: DNA DataBank of Japan (DDBJ) (RRID:SCR_002359) Copy
Computable knowledge regarding functions of genes and gene products. GO resources include biomedical ontologies that cover molecular domains of all life forms as well as extensive compilations of gene product annotations to these ontologies that provide largely species-neutral, comprehensive statements about what gene products do. Used to standardize representation of gene and gene product attributes across species and databases.
Proper citation: Gene Ontology (RRID:SCR_002811) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, Documented on March 24, 2014. A resource for gene expression studies, storing highly curated MIAME-compliant studies (i.e. experiments) employing a variety of technologies such as filter arrays, 2-channel microarrays, Affymetrix chips, SAGE, MPSS and RT-PCR. Data were available for querying and downloading based on the MGED ontology, publications or genes. Both public and private studies (the latter viewable only by users having appropriate logins and permissions) were available from this website. Specific details on protocols, biomaterials, study designs, etc., are collected through a user-friendly suite of web annotation forms. Software has been developed to generate MAGE-ML documents to enable easy export of studies stored in RAD to any other database accepting data in this format. RAD is part of a more general Genomics Unified Schema (http://gusdb.org), which includes a richly annotated gene index (http://allgenes.org), thus providing a platform that integrates genomic and transcriptomic data from multiple organisms. NOTE: Due to changes in technology and funding, the RAD website is no longer available. RAD as a schema is still very much active and incorporated in the GUS (Genomics Unified Schema) database system used by CBIL (EuPathDB, Beta Cell Genomics) and others. The schema for RAD can be viewed along with the other GUS namespaces through our Schema Browser.
Proper citation: RNA Abundance Database (RRID:SCR_002771) Copy
http://learn.genetics.utah.edu/content/addiction/
A physiologic and molecular look at drug addiction involving many factors including: basic neurobiology, a scientific examination of drug action in the brain, the role of genetics in addiction, and ethical considerations. Designed to be used by students, teachers and members of the public, the materials meet selected US education standards for science and health. Drug addiction is a chronic disease characterized by changes in the brain which result in a compulsive desire to use a drug. A combination of many factors including genetics, environment and behavior influence a person's addiction risk, making it an incredibly complicated disease. The new science of addiction considers all of these factors - from biology to family - to unravel the complexities of the addicted brain. * Natural Reward Pathways Exist in the Brain: The reward pathway is responsible for driving our feelings of motivation, reward and behavior. * Drugs Alter the Brain's Reward Pathway: Drugs work over time to change the reward pathway and affect the entire brain, resulting in addiction. * Genetics Is An Important Factor In Addiction: Genetic susceptibility to addiction is the result of the interaction of many genes. * Timing and Circumstances Influence Addiction: If you use drugs when you are an adolescent, you are more likely to develop lifetime addiction. An individual's social environment also influences addiction risk. * Challenges and Issues in Addiction: Addiction impacts society with many ethical, legal and social issues.
Proper citation: New Science of Addiction: Genetics and the Brain (RRID:SCR_002770) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 17,2023. A database of genes and interventions connected with aging phenotypes including those with respect to their effects on life-span or age-related neurological diseases. Information includes: organism, aging phenotype, allele type, strain, gene function, phenotypes, mutant, and homologs. If you know of published data (or your own unpublished data that you'd like to share) not currently in the database, please use the Submit a Gene/Intervention link.
Proper citation: Aging Genes and Interventions Database (RRID:SCR_002701) Copy
Database and central repository for genetic, genomic, molecular and cellular phenotype data and clinical information about people who have participated in pharmacogenomics research studies. The data includes, but is not limited to, clinical and basic pharmacokinetic and pharmacogenomic research in the cardiovascular, pulmonary, cancer, pathways, metabolic and transporter domains. PharmGKB welcomes submissions of primary data from all research into genes and genetic variation and their effects on drug and disease phenotypes. PharmGKB collects, encodes, and disseminates knowledge about the impact of human genetic variations on drug response. They curate primary genotype and phenotype data, annotate gene variants and gene-drug-disease relationships via literature review, and summarize important PGx genes and drug pathways. PharmGKB is part of the NIH Pharmacogenomics Research Network (PGRN), a nationwide collaborative research consortium. Its aim is to aid researchers in understanding how genetic variation among individuals contributes to differences in reactions to drugs. A selected subset of data from PharmGKB is accessible via a SOAP interface. Downloaded data is available for individual research purposes only. Drugs with pharmacogenomic information in the context of FDA-approved drug labels are cataloged and drugs with mounting pharmacogenomic evidence are listed.
Proper citation: PharmGKB (RRID:SCR_002689) Copy
http://www.broadinstitute.org/annotation/genome/magnaporthe_comparative/MultiHome.html
The Magnaporthe comparative genomics database provides accesses to multiple fungal genomes from the Magnaporthaceae family to facilitate the comparative analysis. As part of the Broad Fungal Genome Initiative, the Magnaporthe comparative project includes the finished M. oryzae (formerly M. grisea) genome, as well as the draft assemblies of Gaeumannomyces graminis var. tritici and M. poae. It provides users the tools to BLAST search, browse genome regions (to retrieve DNA, find clones, and graphically view sequence regions), and provides gene indexes and genome statistics. We were funded to attempt 7x sequence coverage comprising paired end reads from plasmids, Fosmids and BACs. Our strategy involves Whole Genome Shotgun (WGS) sequencing, in which sequence from the entire genome is generated and reassembled. Our specific aims are as follows: 1. Generate and assemble sequence reads yielding 7X coverage of the Magnaporthe oryzae genome through whole genome shotgun sequencing. 2. Generate and incorporate BAC and Fosmid end sequences into the genome assembly to provide a paired-end of average every 2 kb. 3. Integrate the genome sequence with existing physical and genetic map information. 4. Perform automated annotation of the sequence assembly. 5. Distribute the sequence assembly and results of our annotation and analysis through a freely accessible, public web server and by deposition of the sequence assembly in GenBank.
Proper citation: Magnaporthe comparative Database (RRID:SCR_003079) Copy
Project to determine the gene expression profiles of normal, precancer, and cancer cells, whose generated resources are available to the cancer community. Interconnected modules provide access to all CGAP data, bioinformatic analysis tools, and biological resources allowing the user to find in silico answers to biological questions in a fraction of the time it once took in the laboratory. * Genes * Tissues * Pathways * RNAi * Chromosomes * SAGE Genie * Tools
Proper citation: Cancer Genome Anatomy Project (RRID:SCR_003072) Copy
This center provides routine behavioral/cognitive testing of mice with phenotypes that are expressed as a consequence of alterations at the level of gene function, and that are relevant to basic neuroscience and to animal models of neurological and psychiatric disorders. Current Research Behavioral testing within the center involves a collaborative component in which mice provided by users are assessed for behavioral/cognitive functions. All research includes behavioral assessment of a variety of genetically altered mice provided by users. Services Provided The objective of the center is to provide a link between genetic and molecular analysis of neural function and the study of integrative systems and clinical conditions through behavioral assessment of animal models, and mouse behavioral phenotypes generated by genetic modification. Sponsors: This resource is supported by the National Center of Research Resources (Grant Number: P40 RR017688).
Proper citation: Neurogenetics and Behavior Center (RRID:SCR_002851) Copy
Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.
Proper citation: Sal-Site (RRID:SCR_002850) Copy
Computational biology research at Memorial Sloan-Kettering Cancer Center (MSKCC) pursues computational biology research projects and the development of bioinformatics resources in the areas of: sequence-structure analysis; gene regulation; molecular pathways and networks, and diagnostic and prognostic indicators. The mission of cBio is to move the theoretical methods and genome-scale data resources of computational biology into everyday laboratory practice and use, and is reflected in the organization of cBio into research and service components ~ the intention being that new computational methods created through the process of scientific inquiry should be generalized and supported as open-source and shared community resources. Faculty from cBio participate in graduate training provided through the following graduate programs: * Gerstner Sloan-Kettering Graduate School of Biomedical Sciences * Graduate Training Program in Computational Biology and Medicine Integral to much of the research and service work performed by cBio is the creation and use of software tools and data resources. The tools that we have created and utilize provide evidence of our involvement in the following areas: * Cancer Genomics * Data Repositories * iPhone & iPod Touch * microRNAs * Pathways * Protein Function * Text Analysis * Transcription Profiling
Proper citation: Computational Biology Center (RRID:SCR_002877) Copy
http://developingmouse.brain-map.org/
Map of gene expression in developing mouse brain revealing gene expression patterns from embryonic through postnatal stages. Provides information about spatial and temporal regulation of gene expression with database. Feature include seven sagittal reference atlases created with a developmental ontology. These anatomic atlases may be viewed alongside in situ hybridization (ISH) data as well as by itself.
Proper citation: Allen Developing Mouse Brain Atlas (RRID:SCR_002990) Copy
http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
Database of embryonic expression patterns using a high throughput RNA in situ hybridization of the protein-coding genes identified in the Drosophila melanogaster genome with images and controlled vocabulary annotations. At the end of production pipeline gene expression patterns are documented by taking a large number of digital images of individual embryos. The quality and identity of the captured image data are verified by independently derived microarray time-course analysis of gene expression using Affymetrix GeneChip technology. Gene expression patterns are annotated with controlled vocabulary for developmental anatomy of Drosophila embryogenesis. Image, microarray and annotation data are stored in a modified version of Gene Ontology database and the entire dataset is available on the web in browsable and searchable form or MySQL dump can be downloaded. So far, they have examined expression of 7507 genes and documented them with 111184 digital photographs.
Proper citation: Patterns of Gene Expression in Drosophila Embryogenesis (RRID:SCR_002868) Copy
It facilitates the search for and dissemination of mass spectra from biologically active metabolites quantified using Gas chromatography (GC) coupled to mass spectrometry (MS). Use the Search Page to search for a compound of your interest, using the name, mass, formula, InChI etc. as query input. Additionally, a Library Search service enables the search of user submitted mass spectra within the GMD. In parallel to the library search, a prediction of chemical sub-groups is performed. This approach has reached beta level and a publication is currently under review. Using several sub-group specific Decision Trees (DTs), mass spectra are classified with respect to the presence of the chemical moieties within the linked (unknown) compound. Prediction of functional groups (ms analysis) facilitates the search of metabolites within the GMD by means of user submitted GC-MS spectra consisting of retention index (n-alkanes, if vailable) and mass intensities ratios. In addition, a functional group prediction will help to characterize those metabolites without available reference mass spectra included in the GMD so far. Instead, the unknown metabolite is characterized by predicted presence or absence of functional groups. For power users this functionality presented here is exposed as soap based web services. Functional group prediction of compounds by means of GC-EI-MS spectra using Microsoft analysis service decision trees All currently available trained decision trees and sub-structure predictions provided by the GMD interface. Table describes the functional group, optional use of an RI system, record date of the trained decision tree, number of MSTs with proportion of MSTs linked to metabolites with the functional group present for each tree. Average and standard deviation of the 50-fold CV error, namely the ratio false over correctly sorted MSTs in the trained DT, are listed. The GMD website offers a range of mass spectral reference libraries to academic users which can be downloaded free of charge in various electronic formats. The libraries are constituted by base peak normalized consensus spectra of single analytes and contain masses in the range 70 to 600 amu, while the ubiquitous mass fragments typically generated from compounds carrying a trimethylsilyl-moiety, namely the fragments at m/z 73, 74, 75, 147, 148, and 149, were excluded.
Proper citation: GMD (RRID:SCR_006625) Copy
http://www.informatics.jax.org/searches/GO_form.shtml
With the MGI GO Browser, you can search for a GO term and view all mouse genes annotated to the term or any subterms. You can also browse the ontologies to view relationships between terms, term definitions, as well as the number of mouse genes annotated to a given term and its subterms. The MGI GO browser directly accesses the GO data in the MGI database, which is updated nightly. Platform: Online tool
Proper citation: MGI GO Browser (RRID:SCR_006489) Copy
Model organism database for the social amoeba Dictyostelium discoideum that provides the biomedical research community with integrated, high quality data and tools for Dictyostelium discoideum and related species. dictyBase houses the complete genome sequence, ESTs, and the entire body of literature relevant to Dictyostelium. This information is curated to provide accurate gene models and functional annotations, with the goal of fully annotating the genome to provide a ''''reference genome'''' in the Amoebozoa clade. They highlight several new features in the present update: (i) new annotations; (ii) improved interface with web 2.0 functionality; (iii) the initial steps towards a genome portal for the Amoebozoa; (iv) ortholog display; and (v) the complete integration of the Dicty Stock Center with dictyBase. The Dicty Stock Center currently holds over 1500 strains targeting over 930 different genes. There are over 100 different distinct amoebozoan species. In addition, the collection contains nearly 600 plasmids and other materials such as antibodies and cDNA libraries. The strain collection includes: * strain catalog * natural isolates * MNNG chemical mutants * tester strains for parasexual genetics * auxotroph strains * null mutants * GFP-labeled strains for cell biology * plasmid catalog The Dicty Stock Center can accept Dictyostelium strains, plasmids, and other materials relevant for research using Dictyostelium such as antibodies and cDNA or genomic libraries.
Proper citation: Dictyostelium discoideum genome database (RRID:SCR_006643) Copy
A fungal rDNA internal transcribed spacer (ITS) sequence database (although additional genes and genetic markers are also welcome) to facilitate identification of environmental samples of fungal DNA. Additional important features include user annotation of INSD sequences to add metadata on, e.g., locality, habitat, soil, climate, and interacting taxa. The user can furthermore annotate INSD sequences with additional species identifications that will appear in the results of any analyses done. UNITE focuses on high-quality ITS sequences generated from fruiting bodies collected and identified by experts and deposited in public herbaria. In addition, it also holds all fungal ITS sequences in the International Nucleotide Sequence Databases (INSD: NCBI, EMBL, DDBJ). Both sets of sequences may be used in any analyses carried out. UNITE is accompanied by a project management system called PlutoF, where users can store field data, document the sequencing lab procedures, manage sequences, and make analyses. PlutoF intends to make it possible for taxonomists, ecologists, and biogeographers to use a common platform for data storage, handling, and analyses, with the intent of facilitating an integration of these disciplines. A user can have an unlimited number of projects but still make analyses across any project data available to him.
Proper citation: UNITE (RRID:SCR_006518) Copy
http://www.informatics.jax.org/mgihome/GXD/gxdgen.shtml
A unified resource that combines text-based and 3D graphical methods to store, display, and analyze mouse developmental gene expression information. The Mouse Gene Expression Information Resource resource will integrate the following components: * Gene Expression Database (GXD) - Integrates different types of expression data and provides links to many other resources to place the data into the larger biological and analytical context. * Anatomy Database - Provides the standard nomenclature for developmental anatomy. * 3D Atlas / Graphical Gene Expression Database - Provides a high-resolution digital representation of mouse anatomy reconstructed from serial sections of single embryos at each representative developmental stage enabling 3D graphical display and analysis of in situ expression data.
Proper citation: Mouse Genome Informatics: The Mouse Gene Expression Information Resource Project (RRID:SCR_006630) Copy
A comparative platform for green plant genomics. Families of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These families allow easy access to clade specific orthology / paralogy relationships as well as clade specific genes and gene expansions. As of release v9.1, Phytozome provides access to forty-one sequenced and annotated green plant genomes which have been clustered into gene families at 20 evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, TAIR, JGI are hyper-linked and searchable., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Phytozome (RRID:SCR_006507) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.