Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://corneliu.henegar.info/FunCluster.htm
FunCluster is a genomic data analysis algorithm which performs functional analysis of gene expression data obtained from cDNA microarray experiments. Besides automated functional annotation of gene expression data, FunCluster functional analysis aims to detect co-regulated biological processes through a specially designed clustering procedure involving biological annotations and gene expression data. FunCluster''''s functional analysis relies on Gene Ontology and KEGG annotations and is currently available for three organisms: Homo Sapiens, Mus Musculus and Saccharomyces Cerevisiae. FunCluster is provided as a standalone R package, which can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix). Download it from the FunCluster website, or from the worldwide mirrors of CRAN. FunCluster is provided freely under the GNU General Public License 2.0. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FunCluster (RRID:SCR_005774) Copy
http://great.stanford.edu/public/html/splash.php
Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool
Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#GOHyperGAll
To test a sample population of genes for overrepresentation of GO terms, the R/BioC function GOHyperGAll computes for all GO nodes a hypergeometric distribution test and returns the corresponding p-values. A subsequent filter function performs a GO Slim analysis using default or custom GO Slim categories. Basic knowledge about R and BioConductor is required for using this tool. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GOHyperGAll (RRID:SCR_005766) Copy
http://www.ebi.ac.uk/Tools/pfa/iprscan/
Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.
Proper citation: InterProScan (RRID:SCR_005829) Copy
http://www.ebi.ac.uk/webservices/whatizit/info.jsf
A text processing system that allows you to do textmining tasks on text. It is great at identifying molecular biology terms and linking them to publicly available databases. Whatizit is also a Medline abstracts retrieval/search engine. Instead of providing the text by Copy&Paste, you can launch a Medline search. The abstracts that match your search criteria are retrieved and processed by a pipeline of your choice. Whatizit is also available as 1) a webservice and as 2) a streamed servlet. The webservice allows you to enrich content within your website in a similar way as in the wikipedia. The streamed servlet allows you to process large amounts of text.
Proper citation: Whatizit (RRID:SCR_005824) Copy
http://www.patternlabforproteomics.org/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented July 5, 2018. Gene Ontology Explorer (GOEx) combines data from protein fold changes with GO over-representation statistics to help draw conclusions in proteomic experiments. It is tightly integrated within the PatternLab for Proteomics project and, thus, lies within a complete computational environment that provides parsers and pattern recognition tools designed for spectral counting. GOEx offers three independent methods to query data: an interactive directed acyclic graph, a specialist mode where key words can be searched, and an automatic search. A recent hack included in GOEx is to load the sparse matrix index file directly into GOEx, instead of going through the report generation using the AC/T-fold methods. This makes it easy for GOEx to analyze any list of proteins as long as the list follows the index file format (described in manuscript) . Please note that if using this alternative strategy, there will be no protein fold information. Platform: Windows compatible
Proper citation: GOEx - Gene Ontology Explorer (RRID:SCR_005779) Copy
http://code.google.com/p/owltools/
OWLTools (aka OWL2LS - OWL2 Life Sciences) is a java API for accessing ontologies in either OBO or OWL. OWLTools provides a bio-ontologies friendly wrapper on top of the Manchester OWL API. It provides many features, including: * convenience methods for OBO-like properties such as synonyms, textual definitions, obsoletion, replaced_by * simple graph-like operations over ontologies * visualization using the QuickGO graphs libraries Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: OWLTools (RRID:SCR_005732) Copy
Biomedical Logical Programming (Blip) is a research-oriented deductive database and prolog application library for handling biological and biomedical data. It includes packages for advanced querying of ontologies and annotations. Blip underpins the Obol tool. Here are some distinguishing characteristics of Blip * Lightweight. Bloat-free: Blip only has as many modules as it needs to do its job. * Fast. * Declarative. Say what you want to do, not how you want to do it * Blip can be Query-oriented: specify your data sources and ask your query * Blip can be Application-oriented: it is designed to be used as an application library used by other bioinformatics tools * Mature and fully functional ontology module for handling both OBO-style ontologies and OWL ontologies. * Modules for handling biological sequences and sequence features. (currently limited functionality, added as needed) * A systems biology module for querying pathway and interaction data. (currently limited functionality, added as needed) * Relational database integration. SQL can be viewed as a highly restricted dialect of Prolog. Although the SWI-Prolog in-memory database is fast and scalable, sometimes it is nice to be able to fetch data from an external database. Blip contains a generic SQL utility module and predicate mappings for the GO database, Ensembl and Chado * Integration with a variety of bioinformatics file formats. SWI-Prolog has a variety of fast libraries for dealing with XML, RDF and tabular data files. Blip provides bridges from bio file formats encoded using these syntaxes into its native models. For other syntaxes, Blip seamlessly integrates other packages such as BioPerl and go-perl. Although these dependencies require extra installation, there is no point reinventing the wheel * Rapid development of web applications. Blip extends SWI-Prolog''''s excellent http support with a simple and powerful logical-functional-programming style application server, serval. This has been used to prototype a fully-featured next-generation replacement for the GO project amigo browser. * Scalable. Blip is not intended to be a toy system on toy data (although it is happy to be used as a toy if you like!). It is intended to be used as an application component and a tool operating on real-world biological and biomedical data Blip is written in SWI-Prolog, a fast, robust and scalable implementation of ISO Prolog. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Blip: Biomedical Logic Programming (RRID:SCR_005733) Copy
http://www.dbfordummies.com/go.asp
Db for Dummies! is a small database that imports the Generic GO Slim. It allows data to be viewed in a tree. The Gene Ontology describes gene products in terms of their associated biological processes, cellular components and molecular functions. The Generic Slim Gene Ontology is a subset of the whole Gene Ontology. The slim version gives a broad overview and leaves out specific/fine grained terms. This example stores the slim version of the Gene Ontology (goslim_generic_obo) that can be downloaded from www.geneontology.org/GO.slims.shtml. Platform: Windows compatible
Proper citation: DBD - Slim Gene Ontology (RRID:SCR_005728) Copy
http://vortex.cs.wayne.edu/projects.htm#Onto-Translate
In the annotation world, the same piece of information can be stored and viewed differently across different databases. For instance, more than one Affymetrix probe ID can refer to the same GenBank sequence (accession number) and more than one nucleotide sequence from GenBank can be grouped in a single UniGene cluster. The result of Onto-Express depends on whether the input list contains Affymetrix probe IDs, GenBank accession numbers or UniGene cluster IDs. The user has to be aware of relations between the different forms of the data in order to interpret correctly the results. Even if the user is aware of the relationships and knows how to convert them, most existing tools allow conversions of individual genes. Onto-Translate is a tool that allows the user to perform easily such translations. Affymetrix probe IDs, etc., translate GO terms into other identifiers like GenBank accession number, Uniprot IDs. User account required. Platform: Online tool
Proper citation: Onto-Translate (RRID:SCR_005725) Copy
ToppGene Suite is a one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network. ToppGene Suite is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis.
Proper citation: ToppGene Suite (RRID:SCR_005726) Copy
http://www.ici.upmc.fr/cluego/
A Cytoscape plug-in that visualizes the non-redundant biological terms for large clusters of genes in a functionally grouped network. It can be used in combination with GOlorize. The identifiers can be uploaded from a text file or interactively from a network of Cytoscape. The type of identifiers supported can be easily extended by the user. ClueGO performs single cluster analysis and comparison of clusters. From the ontology sources used, the terms are selected by different filter criteria. The related terms which share similar associated genes can be combined to reduce redundancy. The ClueGO network is created with kappa statistics and reflects the relationships between the terms based on the similarity of their associated genes. On the network, the node colour can be switched between functional groups and clusters distribution. ClueGO charts are underlying the specificity and the common aspects of the biological role. The significance of the terms and groups is automatically calculated. ClueGO is easy updatable with the newest files from Gene Ontology and KEGG. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: ClueGO (RRID:SCR_005748) Copy
http://www.stanford.edu/~nigam/cgi-bin/dokuwiki/doku.php?id=clench
Cluster Enrichment (CLENCH) allows A. thaliana researchers to perform automated retrieval of GO annotations from TAIR and calculate enrichment of GO terms in gene group with respect to a reference set. Before calculating enrichment, CLENCH allows mapping of the returned annotations to arbitrary coarse levels using GO slim term lists (which can be edited by the user) and a local installation of GO. Platform: Windows compatible, Linux compatible,
Proper citation: CLENCH (RRID:SCR_005735) Copy
Web server to identify statistically enriched pathways, diseases, and GO terms for a set of genes or proteins, using pathway, disease, and GO knowledge from multiple famous databases. It allows for both ID mapping and cross-species sequence similarity mapping. It then performs statistical tests to identify statistically significantly enriched pathways and diseases. KOBAS 2.0 incorporates knowledge across 1327 species from 5 pathway databases (KEGG PATHWAY, PID, BioCyc, Reactome and Panther) and 5 human disease databases (OMIM, KEGG DISEASE, FunDO, GAD and NHGRI GWAS Catalog). A standalone command line version is also available, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: KOBAS (RRID:SCR_006350) Copy
http://www.psb.ugent.be/esb/PiNGO/
A Java-based tool to easily find unknown genes in a network that are significantly associated with user-defined target Gene Ontology (GO) categories. PiNGO is implemented as a plugin for Cytoscape, a popular open source software platform for visualizing and integrating molecular interaction networks. PiNGO predicts the categorization of a gene based on the annotations of its neighbors, using the enrichment statistics of its sister tool BiNGO. Networks can either be selected from the Cytoscape interface or uploaded from file. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: PiNGO (RRID:SCR_000692) Copy
https://factory.euromov.eu/sml/index.php
Open source Java library dedicated to semantic measures computation and analysis. Tools based on the SML are also provided through the SML-Toolkit, a command line software giving access to some of the functionalities of the library. The SML and the toolkit can be used to compute semantic similarity and semantic relatedness between semantic elements (e.g. concepts, terms) or entities semantically characterized (e.g. entities defined in a semantic graph, documents annotated by concepts defined in an ontology).
Proper citation: Semantic Measures Library (RRID:SCR_001383) Copy
http://gmod.org/wiki/Flash_GViewer
Flash GViewer is a customizable Flash movie that can be easily inserted into a web page to display each chromosome in a genome along with the locations of individual features on the chromosomes. It is intended to provide an overview of the genomic locations of a specific set of features - eg. genes and QTLs associated with a specific phenotype, etc. rather than as a way to view all features on the genome. The features can hyperlink out to a detail page to enable to GViewer to be used as a navigation tool. In addition the bands on the chromosomes can link to defineable URL and new region selection sliders can be used to select a specific chromosome region and then link out to a genome browser for higher resolution information. Genome maps for Rat, Mouse, Human and C. elegans are provided but other genome maps can be easily created. Annotation data can be provided as static text files or produced as XML via server scripts. This tool is not GO-specific, but was built for the purpose of viewing GO annotation data. Platform: Online tool
Proper citation: Flash Gviewer (RRID:SCR_012870) Copy
Natural Antisense Transcripts (NATs), a kind of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and/or pathological processes. PlantNATsDB (Plant Natural Antisense Transcripts DataBase) is a platform for annotating and discovering NATs by integrating various data sources involving approximately 2 million NAT pairs in 69 plant species. PlantNATsDB also provides an integrative, interactive and information-rich web graphical interface to display multidimensional data, and facilitate plant research community and the discovery of functional NATs. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. A ''''Gene Set Analysis'''' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs.
Proper citation: PlantNATsDB - Plant Natural Antisense Transcripts DataBase (RRID:SCR_013278) Copy
https://omictools.com/l2l-tool
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 26, 2019.
Database of published microarray gene expression data, and a software tool for comparing that published data to a user''''s own microarray results. It is very simple to use - all you need is a web browser and a list of the probes that went up or down in your experiment. If you find L2L useful please consider contributing your published data to the L2L Microarray Database in the form of list files. L2L finds true biological patterns in gene expression data by systematically comparing your own list of genes to lists of genes that have been experimentally determined to be co-expressed in response to a particular stimulus - in other words, published lists of microarray results. The patterns it finds can point to the underlying disease process or affected molecular function that actually generated the observed changed in gene expression. Its insights are far more systematic than critical gene analyses, and more biologically relevant than pure Gene Ontology-based analyses. The publications included in the L2L MDB initially reflected topics thought to be related to Cockayne syndrome: aging, cancer, and DNA damage. Since then, the scope of the publications included has expanded considerably, to include chromatin structure, immune and inflammatory mediators, the hypoxic response, adipogenesis, growth factors, hormones, cell cycle regulators, and others. Despite the parochial origins of the database, the wide range of topics covered will make L2L of general interest to any investigator using microarrays to study human biology. In addition to the L2L Microarray Database, L2L contains three sets of lists derived from Gene Ontology categories: Biological Process, Cellular Component, and Molecular Function. As with the L2L MDB, each GO sub-category is represented by a text file that contains annotation information and a list of the HUGO symbols of the genes assigned to that sub-category or any of its descendants. You don''''t need to download L2L to use it to analyze your microarray data. There is an easy-to-use web-based analysis tool, and you have the option of downloading your results so you can view them at any time on your own computer, using any web browser. However, if you prefer, the entire L2L project, and all of its components, can be downloaded from the download page. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: L2L Microarray Analysis Tool (RRID:SCR_013440) Copy
Database for ESTs (Expressed Sequence Tags), consensus sequences, bacterial artificial chromosome (BAC) clones, BES (BAC End Sequences). They have generated 69,545 ESTs from 6 full-length cDNA libraries (Porcine Abdominal Fat, Porcine Fat Cell, Porcine Loin Muscle, Liver and Pituitary gland). They have also identified a total of 182 BAC contigs from chromosome 6. It is very valuable resources to study porcine quantitative trait loci (QTL) mapping and genome study. Users can explore genomic alignment of various data types, including expressed sequence tags (ESTs), consensus sequences, singletons, QTL, Marker, UniGene and BAC clones by several options. To estimate the genomic location of sequence dataset, their data aligned BES (BAC End Sequences) instead of genomic sequence because Pig Genome has low-coverage sequencing data. Sus scrofa Genome Database mainly provide comparative map of four species (pig, cattle, dog and mouse) in chromosome 6.
Proper citation: PiGenome (RRID:SCR_013394) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.