Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 686 results
Snippet view Table view Download 686 Result(s)
Click the to add this resource to a Collection

http://www.mscenter.org/research/tissue-bank/

Scientists throughout the world depend on the Rocky Mountain MS Center Tissue Bank to supply high quality human brain tissue and cerebral spinal fluid to support their research. Funded in part by the National MS Society, the Tissue Bank is one of only four MS-related tissue banks in the nation. The Tissue Bank has distributed specimens to more than 160 investigators worldwide and over 1,600 people have consented to be donors after death. Tissue banks provide a unique bridge between those who live with MS and the scientific community. Studies conducted with samples from the Center have led to several important discoveries and 130 publications. While deeply personal, the decision to donate has far-reaching effects as scientists unlock the mysteries of multiple sclerosis. If you would like to donate, arrangements must be made in advance because it is important that tissue is taken within a few hours of death. For more information on making a donation, visit the How To Donate section of this website and contact the Rocky Mountain MS Center Tissue Bank at 303.788.4030 x111.

Proper citation: Rocky Mountain MS Center Tissue Bank (RRID:SCR_004361) Copy   


https://www.bannerhealth.com/research/locations/sun-health-institute/programs/body-donation

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. An autopsy-based, research-devoted brain bank, biobank and biospecimen bank that derives its human donors from the Arizona Study of Aging and Neurodegenerative Disease (AZSAND), a longitudinal clinicopathological study of the health and diseases of elderly volunteers living in Maricopa county and metropolitan Phoenix, Arizona. Their function is studied during life and their organs and tissue after death. To date, they have concentrated their studies on Alzheimer's disease, Parkinson's disease, heart disease and cancer. They share the banked tissue, biomaterials and biospecimens with qualified researchers worldwide. Registrants with suitable scientific credentials will be allowed access to a database of available tissue linked to relevant clinical information, and will allow tissue requests to be initiated., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: Brain and Body Donation Program (RRID:SCR_004822) Copy   


http://brainbank.ucla.edu/

A biomaterial supply resource which collects, stores, and distributes donated tissue to research scientists around the world. Collection occurs through the an anatomical donor program which accepts tissue donation from people with neurological/ psychiatric disorders. The Center also provides a continuous boost to biomedical research by providing high quality and quantity of pre- and post-mortem brains, spinal cords, cerebrospinal fluid (CSF), serum, blood cells and urine to use in investigations of neurological and psychiatric diseases. Scientists without a clinical site may use the Center''s readily available, high quality banked specimens.

Proper citation: Human Brain and Spinal Fluid Resource Center (RRID:SCR_004811) Copy   


http://www.med.umkc.edu/psychiatry/nbtb/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. The UMKC Neuroscience Brain Tissue Bank and Research Laboratory has been established to obtain, process, and distribute human brain tissue to qualified scientists and clinicians dedicated to neuroscience research. No other living organ approaches the human brain in complexity or capacity. Healthy, it astounds and inspires miracles. Diseased, it confounds and diminishes hope. The use of human brain tissue for research will provide insight into the anatomical and neurochemical aspects of diseased and non-diseased brains. While animal models are helpful and necessary in understanding disease, certain disorders can be more efficiently studied using human brain tissue. Also, modern research techniques are often best applied to human tissue. We also need samples of brain tissue that have not been affected by disease. They help us to compare a 'normal' brain with a diseased one. Also, we have a critical need for brain donations from relatives who have genetically inherited disorders. Tissue preparation consists of fresh quick-frozen tissue blocks or coronal slices (nitrogen vapor frozen; custom dissection of specific anatomic regions) or formalin-fixed coronal slices (custom dissection of specific anatomic regions).

Proper citation: UMKC Neuroscience Brain Tissue Bank and Research Laboratory (RRID:SCR_005148) Copy   


http://www.tnp.pitt.edu/pages/donationfrm_mb.htm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 19,2024. Brain tissue donation is a valuable contribution to mental health research. It enables scientists to investigate how the normal brain works, and how the brain is disturbed when it is affected by schizophrenia, depression, bipolar (manic depressive) disease or other related disorders. The Department of Psychiatry at the University of Pittsburgh has established a brain tissue bank to which brain tissue can be donated at no expense. The gift of brain tissue enables scientists to conduct research designed to understand causes, to develop new treatments, and ultimately to find cures for diseases that affect the brain. Brain tissue donation is a gift that makes it possible for researchers to study various types of mental disorders. Donations of brain tissue from individuals without these disorders are also needed to establish comparisons with brain samples from individuals who have these disorders. Any legally competent adult or guardian may indicate during life their interest in donating brain tissue after death. Next-of-kin either of healthy individuals or of those with psychiatric disorders may give consent to donate brain tissue following the death of a loved one. Brain tissue is removed during autopsy at a morgue or hospital and is transported to the University of Pittsburgh Medical Center for examination and study.

Proper citation: University of Pittsburgh Brain Tissue Donation Program (RRID:SCR_005028) Copy   


https://adrc.mc.duke.edu/index.php/research/brain-bank

A research repository of human brains with neurological disorders and normal controls, recruited through the Autopsy and Brain Donation Program coordinator. The Kathleen Price Bryan Brain Bank contains brains from patients with Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Muscular Dystrophy, and other neurological and dementing disorders. The brain tissue is subjected to a detailed neuropathological evaluation and then stored as fixed and frozen hemispheres, paraffin blocks and histological slides. After receipt of an IRB approved request, tissue is supplied to investigators at Duke University, major medical centers and pharmaceutical companies across the United States and worldwide.

Proper citation: Duke University Kathleen Price Bryan Brain Bank (RRID:SCR_005022) Copy   


http://www.neurosci.ucsd.edu/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 31, 2016. The Laboratory of Experimental Neuropathology is engaged in the study of neurodegenerative disease, including Alzheimer's, Parkinson's, and the dementia of HIV encephalitis. It contains a large bank of materials available to fellow investigators including images, publications, and lab safety. Fellow Investigators and Collaborators may request materials from the brain bank. Technologies employed by the laboratory include immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy.

Proper citation: UCSD Experimental Neuropath Laboratory (RRID:SCR_004906) Copy   


  • RRID:SCR_010520

    This resource has 1+ mentions.

http://www.mssm.edu/research/programs/manhattan-hiv-brain-bank/

Biorepository of tissues and fluids relevant for the neurologic, neuropsychologic, psychiatric and neuropathologic manifestations of HIV infection, linked to medical records and an on-going clinical trial for research use by the scientific community. The MHBB conducts a longitudinal, observational study that follows a group of HIV-infected individuals who have agreed to be fluid and organ donors for the purposes of AIDS research. They are currently the largest, multidisciplinary neuroAIDS cohort in New York City, the epicenter of the US HIV epidemic. Research participants undergo regular neurologic, neuropsychologic, and psychiatric evaluations, and provide body fluid samples that are linked to clinical information. Upon their demise, study participants become organ donors. This program has supplied clinical information, tissue, and fluid samples to over 70 qualified AIDS researchers across America, Europe and Australia. In fulfilling its resource mission, the MHBB functions as part of the National NeuroAIDS Tissue Consortium (NNTC). MHBB provides a means by which people living with HIV can be engaged in the struggle to improve our knowledge about HIV infection and the damage it causes to the body.

Proper citation: Manhattan HIV Brain Bank (RRID:SCR_010520) Copy   


http://med.stanford.edu/narcolepsy.html

The Stanford Center for Narcolepsy was established in the 1980s as part of the Department of Psychiatry and Behavioral Sciences. Today, it is the world leader in narcolepsy research with more than 100 articles on narcolepsy to its name. The Stanford Center for Narcolepsy was the first to report that narcolepsy-cataplexy is caused by hypocretin (orexin) abnormalities in both animal models and humans. Under the direction of Drs. Emmanuel Mignot and Seiji Nishino, the Stanford Center for Narcolepsy today treats several hundred patients with the disorder each year, many of whom participate in various research protocols. Other research protocols are conducted in animal models of narcolespy. We are always looking for volunteers in our narcolepsy research studies. We are presently recruiting narcoleptic patients for genetic studies, drug clinical trials, hypocretin measurement studies in the CSF and functional MRI studies. Monetary gifts to the Center for Narcolepsy are welcome. If you wish to make the ultimate gift, please consider participating in our Brain Donation Program. To advance our understanding of the cause, course, and treatment of narcolepsy, in 2001 Stanford University started a program to obtain human brain tissue for use in narcolepsy research. Donated brains provide an invaluable resource and we have already used previously donated brains to demonstrate that narcolepsy is caused by a lack of a very specific type of cell in the brain, the hypocretin (orexin) neuron. While the brain donations do not directly help the donor, they provide an invaluable resource and a gift to others. The real answers as to what causes or occurrs in the brain when one has narcolepsy will only be definitively understood through the study of brain tissue. Through these precious donations, narcolepsy may eventually be prevented or reversible. We currently are seeking brains from people with narcolepsy (with cataplexy and without), idiopathic hypersomnia and controls or people without a diagnosed sleep disorder of excessive sleepiness. Control brains are quite important to research, as findings must always be compared to tissue of a non-affected person. Friends and loved ones of people who suffer with narcoleps may wish to donate to our program to help fill this very important need. Refer to the Movies tab for movies of Narcolepsy / Cataplexy.

Proper citation: Stanford Center for Narcolepsy (RRID:SCR_007021) Copy   


  • RRID:SCR_001579

    This resource has 1+ mentions.

https://www.upf.edu/web/ntsa/downloads/-/asset_publisher/xvT6E4pczrBw/content/2001-indications-of-nonlinear-deterministic-and-finite-dimensional-structures-in-time-series-of-brain-electrical-activity-dependence-on-recording-regi?p_r_p_assetEntryId=229569389&_com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet_INSTANCE_xvT6E4pczrBw_type=content&_com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet_INSTANCE_xvT6E4pczrBw_urlTitle=2001-indications-of-nonlinear-deterministic-and-finite-dimensional-structures-in-time-series-of-brain-electrical-activity-dependence-on-recording-regi&_com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet_INSTANCE_xvT6E4pczrBw_redirect=https%3A%2F%2Fwww.upf.edu%3A443%2Fweb%2Fntsa%2Fdownloads%3Fp_p_id%3Dcom_liferay_asset_publisher_web_portlet_AssetPublisherPortlet_INSTANCE_xvT6E4pczrBw%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_r_p_assetEntryId%3D229569389%26_com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet_INSTANCE_xvT6E4pczrBw_cur%3D0%26p_r_p_resetCur%3Dfalse#229569389

Five data sets containing quasi-stationary, artifact-free EEG signals both in normal subjects and epileptic patients were put in the web by Ralph Andrzejak from the Epilepsy center in Bonn, Germany. Each data set contains 100 single channel EEG segments of 23.6 sec duration.

Proper citation: EEG time series Data Sets (RRID:SCR_001579) Copy   


  • RRID:SCR_003502

    This resource has 1+ mentions.

http://fcon_1000.projects.nitrc.org/indi/pro/BeijingShortTR.html

Dataset of resting state fMRI scans obtained using two different TR's in healthy college-aged volunteers. Specifically, for each participant, data is being obtained with a short TR (0.4 seconds) and a long TR (2.0 seconds). In addition this dataset contains a 64-direction DTI scan for every participant. The following data are released for every participant: * 8-minute resting-state fMRI scan (TR = 2 seconds, # repetitions = 240) * 8-minute resting-state fMRI scans (TR = 0.4 seconds, # repetitions = 1200) * MPRAGE anatomical scan, defaced to protect patient confidentiality * 64-direction diffusion tensor imaging scan (2mm isotropic) * Demographic information

Proper citation: Beijing: Short TR Study (RRID:SCR_003502) Copy   


http://fcon_1000.projects.nitrc.org/indi/pro/Quiron-Valencia.html

Resting state datasets, including an anatomical as well as a resting state fMRI scan, collected from a community sample in Valencia, Spain. The first release includes data for 45 participants. Participants were instructed to keep their eyes open during the resting state scan, no visual stimulus was presented. The following data are released for every participant: * Scanner Type: Philips Achieva 3T-TX * One high-resolution T1-weighted mprage, defaced to protect patient confidentiality * At least one 6-minute resting state fMRI scan (R-fMRI), eyes open, no visual stimulus presented * Demographic Information

Proper citation: Quiron-Valencia Sample (RRID:SCR_003538) Copy   


  • RRID:SCR_003658

http://www.linked-neuron-data.org/

Neuroscience data and knowledge from multiple scales and multiple data sources that has been extracted, linked, and organized to support comprehensive understanding of the brain. The core is the CAS Brain Knowledge base, a very large scale brain knowledge base based on automatic knowledge extraction and integration from various data and knowledge sources. The LND platform provides services for neuron data and knowledge extraction, representation, integration, visualization, semantic search and reasoning over the linked neuron data. Currently, LND extracts and integrates semantic data and knowledge from the following resources: PubMed, INCF-CUMBO, Allen Reference Atlas, NIF, NeuroLex, MeSH, DBPedia/Wikipedia, etc.

Proper citation: Linked Neuron Data (RRID:SCR_003658) Copy   


http://www.cs.tau.ac.il/~shlomito/tissue-net/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. Network visualizations in which the expression and predicted flux data are projected over the global human network. These network visualizations are accessible through the supplemental website using the publicly available Cytoscape software (Cline, Smoot et al. 2007). Since many high degree nodes exist in the network, special layouts are required to produce network visualizations that are readily interpretable. To this end we produced network visualizations in which hub nodes are repeated multiple times and hence layouts with a small number of edge crossings can be generated. Contains entries for brain compartments and brain pathways.

Proper citation: Network-based Prediction of Human Tissue-specific Metabolism (RRID:SCR_007392) Copy   


https://confluence.crbs.ucsd.edu/display/NIF/StemCellInfo

Data tables providing an overview of information about stem cells that have been derived from mice and humans. The tables summarize published research that characterizes cells that are capable of developing into cells of multiple germ layers (i.e., multipotent or pluripotent) or that can generate the differentiated cell types of another tissue (i.e., plasticity) such as a bone marrow cell becoming a neuronal cell. The tables do not include information about cells considered progenitor or precursor cells or those that can proliferate without the demonstrated ability to generate cell types of other tissues. The tables list the tissue from which the cells were derived, the types of cells that developed, the conditions under which differentiation occurred, the methods by which the cells were characterized, and the primary references for the information.

Proper citation: National Institutes of Health Stem Cell Tables (RRID:SCR_008359) Copy   


http://www.nitrc.org/projects/bstp/

A free collection of MRI brain images for testing segmentation algorithms. It is available for download to assess the accuracy, reproducibility and sensitivity of MRI segmentation software. It includes data from infants and adults as well as patients with Alzheimer's disease.

Proper citation: Brain Segmentation Testing Protocol (RRID:SCR_009445) Copy   


  • RRID:SCR_014577

https://senselab.med.yale.edu/MicroCircuitDB/

A database for storing and efficiently retrieving realistic computational models of brain microcircuits and networks. The focus is on microcircuits that are based on experimentally demonstrated properties of neurons and their connectivity.

Proper citation: MicrocircuitDB (RRID:SCR_014577) Copy   


  • RRID:SCR_017477

    This resource has 1+ mentions.

https://wiki.helsinki.fi/display/twineng/Twinstudy

Twin panel consists of three nationwide samples of Finnish twin pairs. Major studies include nicotine dependence, eating disorders and brain imaging and alcohol use.

Proper citation: Finnish Twin Cohort Study (RRID:SCR_017477) Copy   


  • RRID:SCR_010230

    This resource has 10+ mentions.

http://brainhealthregistry.org/

A website aimed at recruiting and assessing subjects for all types of neuroscience studies with the internet. The hope is to accelerate various types of observational studies and clinical trials, and also reduce costs. They are interested in having people, including healthy subjects of all ages, join the registry. Joining only takes a few minutes. The web-based project is designed to speed up cures for Alzheimer's, Parkinson's and other brain disorders. It uses online questionnaires and online neuropsychological tests (which are very much like online brain games).

Proper citation: Brain Health Registry (RRID:SCR_010230) Copy   


http://fcon_1000.projects.nitrc.org/indi/pro/nyu.html

Datasets including a collection of scans from 49 psychiatrically evaluated neurotypical adults, ranging in age from 6 to 55 years old, with age, gender and intelligence quotient (IQ) information provided. Future releases will include more comprehensive phenotypic information, and child and adolescent datasets, as well as individuals from clinical populations. The following data are released for every participant: * At least one 6-minute resting state fMRI scan (R-fMRI) * * One high-resolution T1-weighted mprage, defaced to protect patient confidentiality * Two 64-direction diffusion tensor imaging scans * Demographic information (age, gender) and IQ-measures (Verbal, Performance, and Composite; Weschler Abbreviated Scale of Intelligence - WASI) * Most participants have 2 R-fMRI scans, collected less than 1 hour apart in the same scanning session. Rest_1 is always collected first.

Proper citation: NYU Institute for Pediatric Neuroscience Sample (RRID:SCR_010458) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X