Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.physionet.org/physiobank/database/gaitdb/
A mini-collection of human gait data that was constructed as a teaching resource for an intensive course (The Modern Science of Human Aging, conducted at MIT) that includes walking stride interval time series from 15 subjects: 5 healthy young adults (23 - 29 years old), 5 healthy old adults (71 - 77 years old), and 5 older adults (60 - 77 years old) with Parkinson's disease. For each subject, two columns of data are included. The first column is time (in seconds) and the second is the stride interval (variously known as stride time, gait cycle duration, and time between successive heel strikes of the same foot). The same data are also available as standard PhysioBank-format annotation (.str) and header (.hea) files, for viewing or analysis using PhysioToolkit software from this site. Subjects walked continuously on level ground around an obstacle-free path. The stride interval was measured using ultra-thin, force sensitive resistors placed inside the shoe. The analog force signal was sampled at 300 Hz with a 12 bit A/D converter, using an ambulatory, ankle-worn microcomputer that also recorded the data. Subsequently, the time between foot-strikes was automatically computed. The method for determining the stride interval is a modification of a previously validated method that has been shown to agree with force-platform measures, a gold standard. Data were collected from the healthy subjects as they walked in a roughly circular path for 15 minutes, and from the subjects with Parkinson's disease as they walked for 6 minutes up and down a long hallway.
Proper citation: Gait in Aging and Disease Database (RRID:SCR_006886) Copy
http://www.nia.nih.gov/research/dab/aged-rodent-colonies-handbook
Colonies of barrier-raised, Specific Pathogen-Free (SPF) rodents under contractual arrangement with commercial vendors, specifically for use in aging research. They are not available for use as a general source of adult animals for unrelated areas of research. Animals from the NIA aged rodent colonies are available to investigators at academic and non-profit research institutions under the terms described on the Eligibility Criteria page. Orders must be submitted through the online rodent ordering system (ROS) (http://arc.niapublications.org/acb/stores/1/). Available strains: * Inbred Rats: Fischer 344 (F344), Brown Norway (BN) * Hybrid Rats: F344xBN F1 (F344BN); * Inbred Mice: BALB/cBy, CBA, C57BL/6, DBA/2 * Hybrid Mice: CB6F1 (BALB/cBy x C57BL/6), B6D2F1 (C57BL/6 x DBA/2) * Caloric Restricted Rats: F344 (males only), F344BN F1 (males only) * Caloric Restricted Mice: C57BL/6; B6D2F1 (males only)
Proper citation: NIA Aged Rodent Colonies (RRID:SCR_007317) Copy
National genetics data repository facilitating access to genotypic and phenotypic data for Alzheimer's disease (AD). Data include GWAS, whole genome (WGS) and whole exome (WES), expression, RNA Seq, and CHIP Seq analyses. Data for the Alzheimer’s Disease Sequencing Project (ADSP) are available through a partnership with dbGaP (ADSP at dbGaP). Repository for many types of data generated from NIA supported grants and/or NIA funded biological samples. Data are deposited at NIAGADS or NIA-approved sites. Genetic Data and associated Phenotypic Data are available to qualified investigators in scientific community for secondary analysis.
Proper citation: National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS) (RRID:SCR_007314) Copy
Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.
Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy
http://www.nia.nih.gov/research/dab/aged-rodent-tissue-bank-handbook/tissue-arrays
Offer high-throughput analysis of tissue histology and protein expression for the biogerontology research community. Each array is a 4 micron section that includes tissue cores from multiple tissues at multiple ages on one slide. The arrays are made from ethanol-fixed tissue and can be used for all techniques for which conventional tissue sections can be used. Ages are chosen to span the life from young adult to very old age. (available ages: 4, 12, 18, 24 and 28 months of age) Images of H&E stained punches are available for Liver, Cardiac Muscle, and Brain. The NIA aged rodent tissue arrays were developed with assistance from the National Cancer Institute (NCI) Tissue Array Research Program (TARP), led by Dr. Stephen Hewitt, Director. NCI TARP contains more information on tissue array construction, protocols for using arrays, and references. Preparation and Product Description Tissue arrays are prepared in parallel from different sets of animals so that experiments can be conducted in duplicate, with each array using unique animals with a unique product number. The product descriptions page describes each array, including: * Strain * Gender * Ages * Tissues * Animal Identification Numbers
Proper citation: Aged Rodent Tissue Arrays (RRID:SCR_007332) Copy
https://ida.loni.usc.edu/login.jsp
Archive used for archiving, searching, sharing, tracking and disseminating neuroimaging and related clinical data. IDA is utilized for dozens of neuroimaging research projects across North America and Europe and accommodates MRI, PET, MRA, DTI and other imaging modalities.
Proper citation: LONI Image and Data Archive (RRID:SCR_007283) Copy
http://jaxmice.jax.org/list/ra1642.html
Produce new neurological mouse models that could serve as experimental models for the exploration of basic neurobiological mechanisms and diseases. The impetus for the program resulted from the recognition that: * The value of genomic data would remain limited unless more information about the functionality of its individual components became available. * The task of linking genes to specific behavior would best be accomplished by employing a combination of different approaches. In an effort to complement already existing programs, the Neuroscience Mutagenesis Facility decided to use: a random, genome-wide approach to mutagenesis, i.e.N-ethyl-N-nitrosourea (ENU) as the mutagen; a three-generation back-cross breeding scheme to focus on the detection of recessive mutations; behavioral screens selective for the detection of phenotypes deemed useful for the program goals. The resulting mutant mouse lines have been available to the scientific community for the last five years and over 700 NMF mice have been sent to interested investigators for research; these mutant mouse lines will remain available as frozen embryos (which can be re-derived on request) and can be ordered through the JAX customer service at 1-800-422-6423 (or 207-288-5845). The results of the work of the Neuroscience Mutagenesis Facility and that of two other neurogenesis centers, i.e. The Neurogenomics Project at Northwestern University, and the Neuromutagenesis Project of the Tennessee Mouse Genome Consortium, can also be seen at Neuromice.org, a common web site of these three research centers; in addition, information about all mutants produced by these groups has been recorded in MGI.
Proper citation: JAX Neuroscience Mutagenesis Facility (RRID:SCR_007437) Copy
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.
Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy
Project focused on cerebral aneurysms and provides integrated decision support system to assess risk of aneurysm rupture in patients and to optimize their treatments. IT infrastructure has been developeded for management and processing of vast amount of heterogeneous data acquired during diagnosis.
Proper citation: aneurIST (RRID:SCR_007427) Copy
http://www.medicine.tamhsc.edu/basic-sciences/next/index.html
The Department of Neuroscience and Experimental Therapeutics (NExT) at the Texas A&M Health Science Center College of Medicine has 16 full-time faculty members and is one of four basic science departments within the College of Medicine. Program strengths within the department include brain development, cellular/molecular basis of drug addiction, circadian biology, ocular pharmacology and experimental therapeutics, neurobiology of aging, neurodegenerative diseases such as stroke and Alzheimer''s disease, neuro-oncology and neuroteratology of alcohol, nicotine and other drugs of abuse. The Department of Neuroscience and Experimental Therapeutics participates in an interdisciplinary graduate program in the Medical Sciences that leads primarily to the Ph.D. degree with special emphasis in interdisciplinary training in Neurosciences or Pharmaceutical Sciences. The Ph.D. program in Medical Science usually requires 4-5 years to complete. Graduates from our program are prepared for leadership roles in research and teaching in academic, industrial, or governmental positions. Faculty within the department are affiliated with university-wide interdisciplinary faculties including the TAMU Faculty of Neuroscience rand our clinical science partner, the Texas Brain and Spine Institute. The department is also home to the Women''s Health in Neuroscience Program, consisting of interdisciplinary research faculty and a clinical advisory group aimed at developing a cohesive preclinical approach to the impact of puberty, pregnancy and menopause on brain development, mental health and brain disease.
Proper citation: Texas A and M Health Science Center College of Medicine Department of Neuroscience and Experimental Therapeutics (RRID:SCR_007482) Copy
http://sig.biostr.washington.edu/projects/brain/
The UW Integrated Brain Project is one project within the national Human Brain Project, a national multi-agency effort to develop informatics tools for managing the exploding amount of information that is accumulating about the human brain. The objective of the UW Integrated Brain Project effort is to organize and integrate distributed functional information about the brain around the structural information framework that is the long term goal of our work. This application therefore extends the utility of the Digital Anatomist Project by using it to organize non-structural information. The initial driving neuroscience problem that is being addressed is the management, visualization and analysis of cortical language mapping data. In recent years, advances in imaging technology such as PET and functional MRI have allowed researchers to observe areas of the cortex that are activated when the subject performs language tasks. These advances have greatly accelerated the amount of data available about human language, but have also emphasized the need to organize and integrate the sometimes contradictory sources of data, in order to develop theories about language organization. The hypothesis is that neuroanatomy is the common substrate on which the diverse kinds of data can be integrated. A result of the work done by this project is a set of software tools for generating a 3-D reconstruction of the patient''s own brain from MRI, for mapping functional data to this reconstruction, for normalizing individual anatomy by warping to a canonical brain atlas and by annotating data with terms from an anatomy ontology, for managing individual lab data in local laboratory information systems, for integrating and querying data across separate data management systems, and for visualizing the integrated results. Sponsors: This Human Brain Project research is funded jointly by the National Institute on Deafness and Other Communication Disorders, the National Institute of Mental Health, and the National Institute on Aging.
Proper citation: University of Washington Integrated Brain Project (RRID:SCR_008075) Copy
An interdisciplinary group of scientists and clinicians who study the human brain using a variety of imaging, recording, and computational techniques. Their primary goal is to bridge non-invasive imaging technologies to the underlying neurophysiology of brain neuronal circuits for a better understanding of healthy human brain function, and mechanisms of disruption of this function in diseases such as Alzheimer's, epilepsy and stroke. The other goal of the MMIL is to develop and apply advanced imaging techniques to understanding the human brain and its disorders. In order to ground these methodological developments in their underlying neurobiology, invasive studies in humans and animals involving optical and micro physiological measures are also performed. These methodologies are applied to understanding normal function in sleep, memory and language, development and aging, and diseases such as dementia, epilepsy and autism.
Proper citation: Multimodal Imaging Laboratory (RRID:SCR_008071) Copy
http://www.utsa.edu/claibornelab/
The long-term goals of my research are to understand the relationship between neuronal structure and function, and to elucidate the factors that affect neuronal morphology and function over the lifespan of the mammal. Currently we are examining 1) the effects of synaptic activity on neuronal development; 2) the effects of estrogen on neuronal morphology and on learning and memory; and, 3) the effects of aging on neuronal structure and function. We have focused our efforts on single neurons in the hippocampal formation, a region that is critical for certain forms of learning and memory in rodents and humans. From the portal, you may click on a cell in your region of interest to see the complete database of cells from that region. You may also explore the Neuron Database: * Comparative Electrotonic Analysis of Three Classes of Rat Hippocampal Neurons. (Raw data available) * Quantitative, three-dimensional analysis of granule cell dendrites in the rat dentate gyrus. * Dendritic Growth and Regression in Rat Dentate Granule Cells During Late Postnatal Development.(Raw data available) * A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus.
Proper citation: University of Texas at San Antonio Laboratory of Professor Brenda Claiborne (RRID:SCR_008064) Copy
http://www.nia.nih.gov/research/dab/interventions-testing-program-itp
NIA''s ITP is a multi-institutional study investigating treatments with the potential to exte nd lifespan and delay disease and dysfunction in mice. Priority consideration will be given to the treatments that are easily obtainable, reasonably priced, and can be delivered in the diet (preferred) or water. Interventions that require labor intensive forms of administration, such as daily injections or gavage, are not feasible within the design of the ITP. Treatments currently under study include: - Pharmaceuticals - Nutraceuticals - Foods - Diets - Dietary supplements - Plant extracts - Hormones - Peptides - Amino acids - Chelators - Redox agents - Other agents or mixtures of agents Although the mice involved in this study will be housed at the University of Michigan, the Jackson Laboratories, and the University of Texas Health Sciences Center at San Antonio, the project is designed to involve collaborations with investigators at any university, institute, or other organization that has ideas about pharmacological interventions that might decelerate aging and wishes to test these in a lifespan study of mice. Sponsors: This program is supported by the National Institute of Aging.
Proper citation: Interventions Testing Program (RRID:SCR_008266) Copy
The NYU Alzheimer's Disease Center is part of the Department of Psychiatry at New York University School of Medicine. The center's goals are to advance current knowledge and understanding of brain aging and Alzheimer's disease, to expand the numbers of scientists working in the field of aging and Alzheimer's research, to work toward better treatment options and care for patients, and to apply and share its findings with healthcare providers, researchers, and the general public. The ADC's programs and services extend to other research facilities and to healthcare professionals through the use of its core facilities. The NYU ADC is made up of seven core facilities: Administrative Core, Clinical Core, Neuropathology Core, Education Core, Data Management and Biostatistics Core, Neuroimaging Core, and Psychosocial Core.
Proper citation: NYU Alzheimer's Disease Center (RRID:SCR_008754) Copy
Latest publications: ELDERMET research has recently been published in the Proceedings of the National Academy of Sciences (USA). This work focuses on the composition and stability of the intestinal bacteria in older Irish adults. Read the paper here. Would you like to be part of ELDERMET? We are currently looking for people, aged 65 years or older, living in the community. All we ask is that you live in the Cork area, or are willing to travel to Cork, and have recently (within the last two/three weeks) taken any kind of antibiotic. It doesnt matter if you are still taking the antibiotic, as long as the finishing date isnt more than four weeks before your first visit to ELDERMET. ELDERMET Objectives To assess the composition of the faecal microbiota of elderly volunteers in the Irish population, using state-of-the-art molecular techniques. To correlate diversity, composition, and metabolic potential of the faecal microbial metagenome with health, diet and lifestyle indices that are a) likely to be influenced by the microbiota or b) to influence the microbiota. To develop recommendations for specific dietary ingredients, foodstuffs, functional foods and/or dietary supplements, that will improve the health of elderly consumers. To provide evidence-based recommendations for prospective studies to determine the molecular mechanisms for health improvements promoted by specific food ingredients that modulate components of the microbiota. ELDERMET Rationale The human intestinal microbiota is made up of approximately 1000 genetically unique organisms (phylotypes ) [1]. The bacteria present in the intestine make an important contribution to: metabolism executed in the gut [2] health, in diverse activites from pain perception [3] to cognitive function [4]. There is an increasing body of evidence linking alterations in the human gut microbiota with Inflammatory Bowel Disease [5, 6] and Irritable Bowel Syndrome [7]. The changing pattern of the gut microbiota in elderly subjects [8, 9] may be linked to host changes such as immunosenescence, increased susceptibility to disease and potentially systemic effects. The composition of the intestinal microbiota may be modulated by dietary components including prebiotics [10]. ELDERMET will determine the baseline composition of the gut microbiota of several hundred elderly Irish subjects using a combination of traditional culutre and molecular (culture-independent) methodologies. ELDERMET will explore potential correlations between microbiota composition and a range of health indices; cross-referencing data to dietary intake. Data will be analyzed in the context of the related FHRI projects in Nutrigenomics, Food Consumption, Food Safety, and Diet-Health. ELDERMET will provide recommendations to all stakeholders (including health practitioners and the health service, the food industry and the general public) on how to improve health based on defined modifications to dietary intake. Sponsor. This work is supported by the Goverment of Ireland Department of Agriculture Fisheries and Food/Health Research Board Food for Health Research Initiative award to the ELDERMET project as well as by a Science Foundation Ireland award to the Alimentary Pharmabiotic Centre. M.J.C. is now funded by a fellowship from the Health Research Board of Ireland.
Proper citation: ELDERMET Gut microbiota as an indicator and agent of nutritional health in elderly Irish subjects (RRID:SCR_008492) Copy
http://www.usc.edu/schools/medicine/departments/psychiatry_behavioralsciences/research/gsc/
The USC Geriatric Studies Center includes the State of California Alzheimer's Research Center of California and the National Institute of Aging funded clinical program of the USC Alzheimer's Disease Research Center. It is staffed by USC faculty and physicians with expertise in Alzheimer's disease and age related memory loss. The Center provides evaluation, diagnosis and treatment recommendations, referral to caregiver services and support groups, and the opportunity to participate in clinical drug trials for memory problems.
Proper citation: USC Geriatric Studies Center/Alzheimer's Disease Research Center (RRID:SCR_008725) Copy
http://psychiatry.stanford.edu/alzheimer/
Portal for gerontology research with a variety of clinical, research and educational programs, with the aim of improving the lives of those affected by Alzheimer's Disease and memory losses associated with normal aging. The Center investigates the nature of Alzheimer's Disease, its progression over time, its response to treatments, and problems patients and caregivers experience in dealing with the changes that occur. It also conducts studies that look at changes that occur over the course of normal aging and have a Normal Aging Brain Donor Program. The Aging Clinical Research Center puts out a newsletter that showcases various projects and includes informative articles on dementia.
Proper citation: Stanford/VA Aging Clinical Research Center (RRID:SCR_008678) Copy
http://www.cumc.columbia.edu/dept/taub/index.html
An institute which conducts research of Alzheimer's, Parkinson's and other age-related brain diseases. This organization also provides clinical evaluations to patients with memory problems, Alzheimer's disease or other types of dementia. Furthermore, the institute leads multi-center clinical trials for the treatment and prevention of Alzheimer's, Parkinson's and other age-related brain diseases. There is a brain donation program for enrolled/examined patients. The Education Core of the Taub Institute sponsors community events and Continuing Medical Education programs, as well as the distribution of periodic newsletters and brochures highlighting research developments and other Alzheimer's topics.
Proper citation: Taub Institute for Research on Alzheimers Disease and the Aging Brain (RRID:SCR_008802) Copy
An Alzheimer's disease research center which supports new research and enhances ongoing research by providing core support to bringing together behavioral, biomedical, and clinical scientists. The Center conducts multidisciplinary research, trains scientists, and spreads information about Alzheimer's disease and related disorders to the general public. The principal goal of the Massachusetts ADRC is to support research in aging, Alzheimer's Disease and other related disorders. Researchers work with national and international multi-disciplinary teams to understand: normal aging, the transition from normal aging to mild forms of memory problems, and the later stages of dementia. The Massachusetts ADRC has an active brain donation program at the Massachusetts General Hospital (MGH) for patients as well as subjects enrolled in research studies.
Proper citation: Massachusetts Alzheimer's Disease Research Center (RRID:SCR_008764) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.