Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005720

http://www.gotaxexplorer.de/

GOTaxExplorer presents a new approach to comparative genomics that integrates functional information and families with the taxonomic classification. It integrates UniProt, Gene Ontology, NCBI Taxonomy, Pfam and SMART in one database. GOTaxExplorer provides four different query types: selection of entity sets, comparison of sets of Pfam families, semantic comparison of sets of GO terms, functional comparison of sets of gene products. This permits to select custom sets of GO terms, families or taxonomic groups. For example, it is possible to compare arbitrarily selected organisms or groups of organisms from the taxonomic tree on the basis of the functionality of their genes. Furthermore, it enables to determine the distribution of specific molecular functions or protein families in the taxonomy. The comparison of sets of GO terms allows to assess the semantic similarity of two different GO terms. The functional comparison of gene products makes it possible to identify functionally equivalent and functionally related gene products from two organisms on the basis of GO annotations and a semantic similarity measure for GO. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOTaxExplorer (RRID:SCR_005720) Copy   


  • RRID:SCR_005722

http://vortex.cs.wayne.edu/projects.htm#Onto-Miner

Onto-Miner (OM) provides a single and convenient interface that allows the user to interrogate our databases regarding annotations of known genes. OM will return all known information about a given list of genes. Advantages of OM include the fact it allows queries with multiple genes and allows for scripting. This is unlike GenBank which uses a single gene navigation process. Scripted search of the Onto-Tools database for gene annotations. User account required. Platform: Online tool

Proper citation: Onto-Miner (RRID:SCR_005722) Copy   


http://www.pandora.cs.huji.ac.il/

With PANDORA, you can search for any non-uniform sets of proteins and detect subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA supports GO annotations as well as additional keywords (from UniProt Knowledgebase, InterPro, ENZYME, SCOP etc). It is also integrated into the ProtoNet system, thus allowing testing of thousands of automatically generated protein families. Note that PANDORA replaces the ProtoGO browser developed by the same group. Platform: Online tool

Proper citation: Pandora - Protein ANnotation Diagram ORiented Analysis (RRID:SCR_005686) Copy   


  • RRID:SCR_005681

http://mcbc.usm.edu/gofetcher/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. We developed a web application, GOfetcher, with a very comprehensive search facility for the GO project and a variety of output formats for the results. GOfetcher has three different levels for searching the GO: Quick Search, Advanced Search, and Upload Files for searching. The application includes a unique search option which generates gene information given a nucleotide or protein accession number which can then be used in generating gene ontology information. The output data in GOfetcher can be saved into several different formats; including spreadsheet, comma-separated values, and the Extensible Markup Language (XML) format. Platform: Online tool

Proper citation: GOfetcher (RRID:SCR_005681) Copy   


  • RRID:SCR_005682

    This resource has 1+ mentions.

http://llama.mshri.on.ca/gofish/GoFishWelcome.html

Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GoFish (RRID:SCR_005682) Copy   


  • RRID:SCR_005735

    This resource has 1+ mentions.

http://www.stanford.edu/~nigam/cgi-bin/dokuwiki/doku.php?id=clench

Cluster Enrichment (CLENCH) allows A. thaliana researchers to perform automated retrieval of GO annotations from TAIR and calculate enrichment of GO terms in gene group with respect to a reference set. Before calculating enrichment, CLENCH allows mapping of the returned annotations to arbitrary coarse levels using GO slim term lists (which can be edited by the user) and a local installation of GO. Platform: Windows compatible, Linux compatible,

Proper citation: CLENCH (RRID:SCR_005735) Copy   


  • RRID:SCR_006350

    This resource has 1000+ mentions.

http://kobas.cbi.pku.edu.cn/

Web server to identify statistically enriched pathways, diseases, and GO terms for a set of genes or proteins, using pathway, disease, and GO knowledge from multiple famous databases. It allows for both ID mapping and cross-species sequence similarity mapping. It then performs statistical tests to identify statistically significantly enriched pathways and diseases. KOBAS 2.0 incorporates knowledge across 1327 species from 5 pathway databases (KEGG PATHWAY, PID, BioCyc, Reactome and Panther) and 5 human disease databases (OMIM, KEGG DISEASE, FunDO, GAD and NHGRI GWAS Catalog). A standalone command line version is also available, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: KOBAS (RRID:SCR_006350) Copy   


http://www.informatics.jax.org/mgihome/GO/project.shtml

This resource is part of the Gene Ontology Consortium which seeks to provide controlled vocabularies for the description of the molecular function, biological process, and cellular component of gene products. These terms are to be used as attributes of gene products by collaborating databases, facilitating uniform queries across them. GO team members at MGI participate in ontology development, outreach, and functional curation of mouse gene products. The GO vocabularies have a hierarchical structure that permits a range of detail from high-level, broadly descriptive terms to very low level, highly specific terms. This broad range is useful both in annotating genes and in searching for gene information using these terms as search criteria. GO terms are defined, allowing all databases to use the terms consistently and properly. GO annotations in the databases additionally include the publication reference which allowed the association to be made and an evidence statement citing how the association was determined.

Proper citation: Mouse Genome Informatics: The Gene Ontology Project (RRID:SCR_006447) Copy   


  • RRID:SCR_004690

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/biosystems/

Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.

Proper citation: NCBI BioSystems Database (RRID:SCR_004690) Copy   


  • RRID:SCR_004608

    This resource has 500+ mentions.

http://www.ebi.ac.uk/QuickGO/

A web-based browser for Gene Ontology terms and annotations, which is provided by the UniProtKB-GOA group at the EBI. It is able to offer a range of facilities including bulk downloads of GO annotation data which can be extensively filtered by a range of different parameters and GO slim set generation. The software for QuickGO is freely available under the Apache 2 license. QuickGO can supply GO term information and GO annotation data via REST web services.

Proper citation: QuickGO (RRID:SCR_004608) Copy   


http://genespeed.ccf.org/home/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Database and customized tools to study the PFAM protein domain content of the transcriptome for all expressed genes of Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans tethered to both a genomics array repository database and a range of external information resources. GeneSpeed has merged information from several existing data sets including the Gene Ontology Consortium, InterPro, Pfam, Unigene, as well as micro-array datasets. GeneSpeed is a database of PFAM domain homology contained within Unigene. Because Unigene is a non-redundant dbEST database, this provides a wide encompassing overview of the domain content of the expressed transcriptome. We have structured the GeneSpeed Database to include a rich toolset allowing the investigator to study all domain homology, no matter how remote. As a result, homology cutoff score decisions are determined by the scientist, not by a computer algorithm. This quality is one of the novel defining features of the GeneSpeed database giving the user complete control of database content. In addition to a domain content toolset, GeneSpeed provides an assortment of links to external databases, a unique and manually curated Transcription Factor Classification list, as well as links to our newly evolving GeneSpeed BetaCell Database. GeneSpeed BetaCell is a micro-array depository combined with custom array analysis tools created with an emphasis around the meta analysis of developmental time series micro-array datasets and their significance in pancreatic beta cells.

Proper citation: GeneSpeed- A Database of Unigene Domain Organization (RRID:SCR_002779) Copy   


  • RRID:SCR_002729

    This resource has 1+ mentions.

http://funsimmat.bioinf.mpi-inf.mpg.de

FunSimMat is a comprehensive resource of semantic and functional similarity values. It allows ranking disease candidate proteins for OMIM diseases and searching for functional similarity values for proteins (extracted from UniProt), and protein families (Pfam, SMART). FunSimMat provides several different semantic and functional similarity measures for each protein pair using the Gene Ontology annotation from UniProtKB and the Gene Ontology Annotation project at EBI (GOA). There are several search options available: Disease candidate prioritization: * Rank candidate proteins using any OMIM disease entry * Compare a list of proteins to any OMIM disease entry * Compare all human proteins to any OMIM disease entry Functional similarity: * Compare one protein / protein family to a list of proteins / protein families * Compare a list of GO terms to a list of proteins / protein families Semantic similarity: * For a list of GO terms, FunSimMat performs an all-against-all comparison and displays the semantic similarity values. FunSimMat provides an XML-RPC interface for performing automatic queries and processing of the results as well as a RestLike Interface. Platform: Online tool

Proper citation: FunSimMat (RRID:SCR_002729) Copy   


  • RRID:SCR_002834

    This resource has 10+ mentions.

http://www.greenphyl.org/

A database designed for plant comparative and functional genomics based on complete genomes. It comprises complete proteome sequences from the major phylum of plant evolution. The clustering of these proteomes was performed to define a consistent and extensive set of homeomorphic plant families. Based on this, lists of gene families such as plant or species specific families and several tools are provided to facilitate comparative genomics within plant genomes. The analyses follow two main steps: gene family clustering and phylogenomic analysis of the generated families. Once a group of sequences (cluster) is validated, phylogenetic analyses are performed to predict homolog relationships such as orthologs and ultraparalogs.

Proper citation: GreenPhylDB (RRID:SCR_002834) Copy   


http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl

Database of embryonic expression patterns using a high throughput RNA in situ hybridization of the protein-coding genes identified in the Drosophila melanogaster genome with images and controlled vocabulary annotations. At the end of production pipeline gene expression patterns are documented by taking a large number of digital images of individual embryos. The quality and identity of the captured image data are verified by independently derived microarray time-course analysis of gene expression using Affymetrix GeneChip technology. Gene expression patterns are annotated with controlled vocabulary for developmental anatomy of Drosophila embryogenesis. Image, microarray and annotation data are stored in a modified version of Gene Ontology database and the entire dataset is available on the web in browsable and searchable form or MySQL dump can be downloaded. So far, they have examined expression of 7507 genes and documented them with 111184 digital photographs.

Proper citation: Patterns of Gene Expression in Drosophila Embryogenesis (RRID:SCR_002868) Copy   


  • RRID:SCR_006489

    This resource has 1+ mentions.

http://www.informatics.jax.org/searches/GO_form.shtml

With the MGI GO Browser, you can search for a GO term and view all mouse genes annotated to the term or any subterms. You can also browse the ontologies to view relationships between terms, term definitions, as well as the number of mouse genes annotated to a given term and its subterms. The MGI GO browser directly accesses the GO data in the MGI database, which is updated nightly. Platform: Online tool

Proper citation: MGI GO Browser (RRID:SCR_006489) Copy   


  • RRID:SCR_006596

    This resource has 10+ mentions.

http://www.ebi.ac.uk/ontology-lookup/

Interactive and programmatic interfaces to query, browse and navigate an increasing number of biomedical ontologies and controlled vocabularies. It provides a web service interface to query multiple ontologies from a single location with a unified output format. It can integrate any ontology available in the Open Biomedical Ontology (OBO) format. The database can be queried to obtain information on a single term or to browse a complete ontology using AJAX. Auto-completion provides a user-friendly search mechanism. An AJAX-based ontology viewer is available to browse a complete ontology or subsets of it. A weekly MySQL database export file can be downloaded from the EBI public FTP directory.

Proper citation: Ontology Lookup Service (RRID:SCR_006596) Copy   


  • RRID:SCR_006919

    This resource has 1+ mentions.

http://sourceforge.net/p/fastsemsim/home/Home/

A package that implements several semantic similarity measures. It is both a library and an end-user application, featuring an intuitive graphical user interface (GUI). It has been implemented with the aim of being fast, expandable, and easy to use. It allows the user to work with the most updated version of GO database and customizable annotation corpora. It provides a set of logically-organized classes that can be easily exploited to both integrate semantic similarity into different analysis pipelines and extend the library with new measures. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FastSemSim (RRID:SCR_006919) Copy   


  • RRID:SCR_006941

    This resource has 10+ mentions.

http://geneontology.org/docs/tools-overview/

Collection of tools developed by GO Consortium and by third parties. Tools are listed by category or alphabetically and continue to be improved and expanded.

Proper citation: Gene Ontology Tools (RRID:SCR_006941) Copy   


  • RRID:SCR_006937

    This resource has 10+ mentions.

http://autismkb.cbi.pku.edu.cn/

Genetic factors contribute significantly to ASD. AutismKB is an evidence-based knowledgebase of Autism spectrum disorder (ASD) genetics. The current version contains 2193 genes (99 syndromic autism related genes and 2135 non-syndromic autism related genes), 4617 Copy Number Variations (CNVs) and 158 linkage regions associated with ASD by one or more of the following six experimental methods: # Genome-Wide Association Studies (GWAS); # Genome-wide CNV studies; # Linkage analysis; # Low-scale genetic association studies; # Expression profiling; # Other low-scale gene studies. Based on a scoring and ranking system, 99 syndromic autism related genes and 383 non-syndromic autism related genes (434 genes in total) were designated as having high confidence. Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a prevalence of 1.0-2.6%. The three core symptoms of ASD are: # impairments in reciprocal social interaction; # communication impairments; # presence of restricted, repetitive and stereotyped patterns of behavior, interests and activities.

Proper citation: AutismKB (RRID:SCR_006937) Copy   


  • RRID:SCR_006794

    This resource has 50+ mentions.

https://cansar.icr.ac.uk/

canSAR is an integrated database that brings together biological, chemical, pharmacological (and eventually clinical) data. Its goal is to integrate this data and make it accessible to cancer research scientists from multiple disciplines, in order to help with hypothesis generation in cancer research and support translational research. This cancer research and drug discovery resource was developed to utilize the growing publicly available biological annotation, chemical screening, RNA interference screening, expression, amplification and 3D structural data. Scientists can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets. canSAR has, from the outset, been completely use-case driven which has dramatically influenced the design of the back-end and the functionality provided through the interfaces. The Web interface provides flexible, multipoint entry into canSAR. This allows easy access to the multidisciplinary data within, including target and compound synopses, bioactivity views and expert tools for chemogenomic, expression and protein interaction network data.

Proper citation: canSAR (RRID:SCR_006794) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X