Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 94 results
Snippet view Table view Download 94 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006250

    This resource has 100+ mentions.

http://genetrail.bioinf.uni-sb.de/

A web-based application that analyzes gene sets for statistically significant accumulations of genes that belong to some functional category. Considered category types are: KEGG Pathways, TRANSPATH Pathways, TRANSFAC Transcription Factor, GeneOntology Categories, Genomic Localization, Protein-Protein Interactions, Coiled-coil domains, Granzyme-B clevage sites, and ELR/RGD motifs. The web server provides two statistical approaches, "Over-Representation Analysis" (ORA) comparing a reference set of genes to a test set, and "Gene Set Enrichment Analysis" (GSEA) scoring sorted lists of genes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneTrail (RRID:SCR_006250) Copy   


  • RRID:SCR_013023

    This resource has 10+ mentions.

http://www.benoslab.pitt.edu/comir/

Data analysis service that predicts whether a given mRNA is targeted by a set of miRNAs. ComiR uses miRNA expression to improve and combine multiple miRNA targets for each of the four prediction algorithms: miRanda, PITA, TargetScan and mirSVR. The composite scores of the four algorithms are then combined using a support vector machine trained on Drosophila Ago1 IP data.

Proper citation: ComiR (RRID:SCR_013023) Copy   


  • RRID:SCR_003009

    This resource has 10+ mentions.

http://www.GeneWeaver.org

Freely accessible phenotype-centered database with integrated analysis and visualization tools. It combines diverse data sets from multiple species and experiment types, and allows data sharing across collaborative groups or to public users. It was conceived of as a tool for the integration of biological functions based on the molecular processes that subserved them. From these data, an empirically derived ontology may one day be inferred. Users have found the system valuable for a wide range of applications in the arena of functional genomic data integration.

Proper citation: Gene Weaver (RRID:SCR_003009) Copy   


  • RRID:SCR_005186

    This resource has 1+ mentions.

http://seqant.genetics.emory.edu/

A free web service and open source software package that performs rapid, automated annotation of DNA sequence variants (single base mutations, insertions, deletions) discovered with any sequencing platform. Variant sites are characterized with respect to their functional type (Silent, Replacement, 5' UTR, 3' UTR, Intronic, Intergenic), whether they have been previously submitted to dbSNP, and their evolutionary conservation. Annotated variants can be viewed directly on the web browser, downloaded in a tab delimited text file, or directly uploaded in a Browser Extended Data (BED) format to the UCSC genome browser. SeqAnt further identifies all loci harboring two or more coding sequence variants that help investigators identify potential compound heterozygous loci within exome sequencing experiments. In total, SeqAnt resolves a significant bottleneck by allowing an investigator to rapidly prioritize the functional analysis of those variants of interest.

Proper citation: SeqAnt (RRID:SCR_005186) Copy   


  • RRID:SCR_005682

    This resource has 1+ mentions.

http://llama.mshri.on.ca/gofish/GoFishWelcome.html

Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GoFish (RRID:SCR_005682) Copy   


  • RRID:SCR_005709

    This resource has 1000+ mentions.

http://genemania.org/

Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMANIA (RRID:SCR_005709) Copy   


  • RRID:SCR_006070

    This resource has 10+ mentions.

http://www.nematodes.org/nembase4/

NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.

Proper citation: NEMBASE (RRID:SCR_006070) Copy   


http://cebs.niehs.nih.gov

Repository for toxicogenomics data, including study design and timeline, clinical chemistry and histopathology findings and microarray and proteomics data. Data derived from studies of chemicals and of genetic alterations, and is compatible with clinical and environmental studies. Data relating to environmental health, pharmacology, and toxicology. It is not necessary to have microarray data, but study design and phenotypic anchoring data are required.CEBS contains raw microarray data collected in accordance with MIAME guidelines and provides tools for data selection, pre-processing and analysis resulting in annotated lists of genes of interest. Biomedical Investigation Database is another component of CEBS system. used to load and curate study data prior to export to CEBS, in addition to capturing and displaying novel data types such as PCR data, or additional fields of interest, including those defined by the HESI Toxicogenomics Committee. BID has been shared with Health Canada and the US Environmental Protection Agency.

Proper citation: Chemical Effects in Biological Systems (CEBS) (RRID:SCR_006778) Copy   


  • RRID:SCR_018186

    This resource has 100+ mentions.

http://crispr.dbcls.jp/

Software for designing CRISPR/Cas guide RNA with reduced off target sites. Used for rational design of CRISPR/Cas target. Web server for selecting rational CRISPR/Cas targets from input sequence. Server currently incorporates genomic sequences of human, mouse, rat, marmoset, pig, chicken, frog, zebrafish, Ciona, fruit fly, silkworm, Caenorhabditis elegans, Arabidopsis, rice, Sorghum and budding yeast.

Proper citation: CRISPRdirect (RRID:SCR_018186) Copy   


  • RRID:SCR_008737

    This resource has 10+ mentions.

http://www.textpresso.org/

An information extracting and processing package for biological literature that can be used online or installed locally via a downloadable software package, http://www.textpresso.org/downloads.html Textpresso's two major elements are (1) access to full text, so that entire articles can be searched, and (2) introduction of categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or describe one (e.g., methods, etc). A search engine enables the user to search for one or a combination of these categories and/or keywords within an entire literature. The Textpresso project serves the biological and biomedical research community by providing: * Full text literature searches of model organism research and subject-specific articles at individual sites. Major elements of these search engines are (1) access to full text, so that the entire content of articles can be searched, and (2) search capabilities using categories of biological concepts and classes that relate two objects (e.g., association, regulation, etc.) or identify one (e.g., cell, gene, allele, etc). The search engines are flexible, enabling users to query the entire literature using keywords, one or more categories or a combination of keywords and categories. * Text classification and mining of biomedical literature for database curation. They help database curators to identify and extract biological entities and facts from the full text of research articles. Examples of entity identification and extraction include new allele and gene names and human disease gene orthologs; examples of fact identification and extraction include sentence retrieval for curating gene-gene regulation, Gene Ontology (GO) cellular components and GO molecular function annotations. In addition they classify papers according to curation needs. They employ a variety of methods such as hidden Markov models, support vector machines, conditional random fields and pattern matches. Our collaborators include WormBase, FlyBase, SGD, TAIR, dictyBase and the Neuroscience Information Framework. They are looking forward to collaborating with more model organism databases and projects. * Linking biological entities in PDF and online journal articles to online databases. They have established a journal article mark-up pipeline that links select content of Genetics journal articles to model organism databases such as WormBase and SGD. The entity markup pipeline links over nine classes of objects including genes, proteins, alleles, phenotypes, and anatomical terms to the appropriate page at each database. The first article published with online and PDF-embedded hyperlinks to WormBase appeared in the September 2009 issue of Genetics. As of January 2011, we have processed around 70 articles, to be continued indefinitely. Extension of this pipeline to other journals and model organism databases is planned. Textpresso is useful as a search engine for researchers as well as a curation tool. It was developed as a part of WormBase and is used extensively by C. elegans curators. Textpresso has currently been implemented for 24 different literatures, among them Neuroscience, and can readily be extended to other corpora of text.

Proper citation: Textpresso (RRID:SCR_008737) Copy   


  • RRID:SCR_016159

    This resource has 50+ mentions.

https://github.com/lucventurini/mikado/

Mikado is a lightweight Python3 pipeline whose purpose is to facilitate the identification of expressed loci from RNA-Seq data * and to select the best models in each locus.

Proper citation: Mikado (RRID:SCR_016159) Copy   


  • RRID:SCR_003343

    This resource has 1000+ mentions.

http://www.pictar.org

An algorithm for the identification of microRNA targets. Details are provided (3' UTR alignments with predicted sites, links to various public databases etc) regarding: # microRNA target predictions in vertebrates (Krek et al, Nature Genetics 37:495-500 (2005)) # microRNA target predictions in seven Drosophila species (Grn et al, PLoS Comp. Biol. 1:e13 (2005)) # microRNA targets in three nematode species (Lall et al, Current Biology 16, 1-12 (2006)) # human microRNA targets that are not conserved but co-expressed (i.e. the microRNA and mRNA are expressed in the same tissue) (Chen and Rajewsky, Nat Genet 38, 1452-1456 (2006)) co-expressed targets

Proper citation: PicTar (RRID:SCR_003343) Copy   


  • RRID:SCR_001147

    This resource has 1+ mentions.

http://bodymap.genes.nig.ac.jp/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. A taxonomical and anatomical database of latest cross species animal EST data, clustered by UniGene and inter connected by Inparanoid. Users can search by Unigene, RefSeq, or Entrez Gene ID, or search for Gene Name or Tissue type. Data is also sortable and viewable based on qualities of normal, Neoplastic, or other. The last data import appears to be from 2008

Proper citation: BodyMap-Xs (RRID:SCR_001147) Copy   


http://www.cisred.org/

Database for conserved sequence motifs identified by genome scale motif discovery, similarity, clustering, co-occurrence and coexpression calculations. Sequence inputs include low-coverage genome sequence data and ENCODE data. The database offers information on atomic motifs, motif groups and patterns. In promoter-based cisRED databases, sequence search regions for motif discovery extend from 1.5 Kb upstream to 200b downstream of a transcription start site, net of most types of repeats and of coding exons. Many transcription factor binding sites are located in such regions. For each target gene's search region, a base set of probabilistic ab initio discovery tools is used, in parallel, to find over-represented atomic motifs. Discovery methods use comparative genomics with over 40 vertebrate input genomes. In ChIP-seq-based cisRED databases, sequence search regions for motif discovery correspond to significant peaks that represent genome-wide sites of protein-DNA binding. Because such peaks occur in a wide range of genic and intergenic locations, ChIP-seq and promoter-based databases are complementary. Currently, motif discovery for ChIP-seq data uses scan-based approaches that make more explicit use of sets of sequences known to be functional transcription factor binding sites, and that consider a wide range of levels of conservation. For the human STAT1 ChIP-seq database search regions in the target species (human) was selected +/- 300 bp around the ChIP-seq peak maximum. Repeats and coding regions were masked. Multiple sequence alignment were used to assemble orthologous input sequences from other species.

Proper citation: cisRED: cis-regulatory element (RRID:SCR_002098) Copy   


  • RRID:SCR_002097

    This resource has 10+ mentions.

http://spliceosomedb.ucsc.edu/

A database of proteins and RNAs that have been identified in various purified splicing complexes. Various names, orthologs and gene identifiers of spliceosome proteins have been cataloged to navigate the complex nomenclature of spliceosome proteins. Links to gene and protein records are also provided for the spliceosome components in other databases. To navigate spliceosome assembly dynamics, tools were created to compare the association of spliceosome proteins with complexes that form at specific stages of spliceosome assembly based on a compendium of mass spectrometry experiments that identified proteins in purified splicing complexes.

Proper citation: Spliceosome Database (RRID:SCR_002097) Copy   


  • RRID:SCR_002807

    This resource has 10+ mentions.

http://www.germonline.org/

Cross-species microarray expression database focusing on high-throughput expression data relevant for germline development, meiosis and gametogenesis as well as the mitotic cell cycle. The database contains a unique combination of information: 1) High-throughput expression data obtained with whole-genome high-density oligonucleotide microarrays (GeneChips). 2) Sample annotation (mouse over the sample name and click on it) using the Multiomics Information Management and Annotation System (MIMAS 3.0). 3) In vivo protein-DNA binding data and protein-protein interaction data (available for selected species). 4) Genome annotation information from Ensembl version 50. 5) Orthologs are identified using data from Ensembl and OMA and linked to each other via a section in the report pages. The portal provides access to the Saccharomyces Genomics Viewer (SGV) which facilitates online interpretation of complex data from experiments with high-density oligonucleotide tiling microarrays that cover the entire yeast genome. The database displays only expression data obtained with high-density oligonucleotide microarrays (GeneChips)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.

Proper citation: GermOnline (RRID:SCR_002807) Copy   


  • RRID:SCR_003092

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/mapview/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 4, 2023. Database that provides special browsing capabilities for a subset of organisms in Entrez Genomes. Map Viewer allows users to view and search an organism's complete genome, display chromosome maps, and zoom into progressively greater levels of detail, down to the sequence data for a region of interest. If multiple maps are available for a chromosome, it displays them aligned to each other based on shared marker and gene names, and, for the sequence maps, based on a common sequence coordinate system.

Proper citation: MapViewer (RRID:SCR_003092) Copy   


  • RRID:SCR_002762

    This resource has 100+ mentions.

http://hint.yulab.org/

A database of high-quality protein-protein interactions in different organisms.

Proper citation: HINT (RRID:SCR_002762) Copy   


  • RRID:SCR_003569

    This resource has 50+ mentions.

http://signalink.org/

An integrated resource to analyze signaling pathway cross-talks, transcription factors, miRNAs and regulatory enzymes. The multi-layered database structure is made up of signaling pathways, their pathway regulators (e.g., scaffold and endocytotic proteins) and modifier enzymes (e.g., phosphatases, ubiquitin ligases), as well as transcriptional and post-transcriptional regulators of all of these components. The website allows the interactive exploration of how each signaling protein is regulated. Features * experimental data not only from humans but from two invertebrate model organisms, C. elegans and D. melanogaster; * combines manual curation with large-scale datasets; * provides confidence scores for each interaction; * operates a customizable download page with multiple file formats (e.g., BioPAX, Cytoscape, SBML).

Proper citation: SignaLink (RRID:SCR_003569) Copy   


  • RRID:SCR_005805

    This resource has 10+ mentions.

http://www.unihi.org

A database of human molecular interaction networks that integrates human protein-protein and transcriptional regulatory interactions from 15 distinct resources and aims to give direct and easy access to the integrated data set and to enable users to perform network-based investigations. The database includes tools (i) to search for molecular interaction partners of query genes or proteins in the integrated dataset, (ii) to inspect the origin, evidence and functional annotation of retrieved proteins and interactions, (iii) to visualize and adjust the resulting interaction network, (iv) to filter interactions based on method of derivation, evidence and type of experiment as well as based on gene expression data or gene lists and (v) to analyze the functional composition of interaction networks.

Proper citation: Unified Human Interactome (RRID:SCR_005805) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X