Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://amigo.geneontology.org/
Web tool to search, sort, analyze, visualize and download data of interest. Along with providing details of the ontologies, gene products and annotations, features a BLAST search, Term Enrichment and GO Slimmer tools, the GO Online SQL Environment and a user help guide.Used at the Gene Ontology (GO) website to access the data provided by the GO Consortium. Developed and maintained by the GO Consortium.
Proper citation: AmiGO (RRID:SCR_002143) Copy
https://ostr.ccr.cancer.gov/resources/provider_details/nci-mouse-repository
The NCI Mouse Repository cryoarchives and distributes strains of genetically engineered mice that are of immediate interest to the cancer research community. These are either gene-targeted or transgenic mice that display a cancer-related phenotype, or tool strains (e.g., cre transgenics) that can be used to develop new cancer models. You do not have to be a member of the NCI Mouse Repository or a recipient of NCI funding to have your mouse model distributed through the NCI Mouse Repository. NCI Mouse Repository strains are maintained as live colonies or cryoarchived as frozen embryos, depending on demand. Up to three breeder pairs may be ordered from live colonies. Cryoarchived strains are supplied as frozen embryos or recovery of live mice by the NCI Mouse Repository may be requested.
Proper citation: NCI Mouse Repository (RRID:SCR_002264) Copy
A web-based application designed from a genetic epidemiology point of view to analyze association studies using single nucleotide polymorphisms (SNPs). For each selected SNP, you will receive: * Allele and genotype frequencies * Test for Hardy-Weinberg equilibrium * Analysis of association with a response variable based on linear or logistic regression * Multiple inheritance models: co-dominant, dominant, recessive, over-dominant and additive * Analysis of interactions (gene-gene or gene-environment) If multiple SNPs are selected: * Linkage disequilibrium statistics * Haplotype frequency estimation * Analysis of association of haplotypes with the response * Analysis of interactions (haplotypes-covariate)
Proper citation: SNPSTATS (RRID:SCR_002142) Copy
http://compbio.dfci.harvard.edu/tgi/
THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.The goal of The Gene Index Project is to use the available Expressed Sequence Transcript (EST) and gene sequences, along with the reference genomes wherever available, to provide an inventory of likely genes and their variants and to annotate these with information regarding the functional roles played by these genes and their products. The promise of genome projects has been a complete catalog of genes in a wide range of organisms. While genome projects have been successful in providing reference genome sequences, the problem of finding genes and their variants in genomic sequence remains an ongoing challenge. TGI has created an inventory that contains genes and their variants together with description. In addition, this resource is attempting to use these catalogs to find links between genes and pathways in different species and to provide lists of features within completed genomes that can aid in the understanding of how gene expression is regulated. DATABASES *Eukaryotic Gene Orthologues (formerly known as TOGA - TIGR Orthologous Gene Alignment): Eukaryotic Gene Orthologues (EGO) at DFGI are generated by pair-wise comparison between the Tentative Consensus (TC) sequences that comprise the Dana Farber Gene Indices from individual organisms. The reciprocal pairs of the best match were clustered into individual groups and multiple sequence alignments were displayed for each group. *GeneChip Oncology Database (GCOD):Cancer gene expression database is a collection of publicly available microarray expression data on Affymetrix GeneChip Arrays related to human cancers. Currently only datasets with available raw data (Affymetrix .CEL files) are processed. All processed datasets were subjected to extensive manual curation, uniform processing and consistent quality control. You can browse the experiments in our collection, perform statistical analysis, and download processed data; or to search gene expression profiles using Entrez gene symbol, Unigene ID, or Affymetrix probeset ID. *Gene Indices: As of July 1, 2008, there are 111 publicly available gene indices. They are separated into 4 categories for better organization and easier access. Animal: 41, Plant: 45, Protist: 15, Fungal: 10 *Genomic Maps: Human, mouse, rat, chicken, drosophila melanogaster, zebrafish, mosquito, caenorhabditis elegans, Arabidopsis thaliana, rice, yeast, fission yeast Dana-Farber Cancer Institute (DFCI) Gene Indices Software Tools: *TGI Clustering tools (TGICL): a software system for fast clustering of large EST datasets. *GICL: this package contains the scripts and all the necessary pre-compiled binaries for 32bit Linux systems. *clview: an assembly file viewer. *SeqClean:a script for automated trimming and validation of ESTs or other DNA sequences by screening for various contaminants, low quality and low-complexity sequences. *cdbfasta/cdbyank: fast indexing/retrieval of fasta records from flat file databases. *DAS/XML Genomic Viewer The Genomic viewer borrows modules from http://www.biodas.org (lstein (at) cshl.org) & http://webreference.com.
Proper citation: Gene Index Project (RRID:SCR_002148) Copy
http://microbes.ucsc.edu/cgi-bin/hgGateway?db=neisMeni_MC58_1
Portal contains detailed information for Neisseria meningitidis MC58. Information include DNA molecule summary, primary annotation summary, and taxonomy. It is a tool that allows the researcher to access all of the bacterial genome sequences completed to date. Users may access information on all of the bacterial genomes or any subset of them. Information in the website about its DNA molecule includes: total number of DNA molecules, total size of all DNA molecules, number of primary annotation coding bases, and number of G + C bases. Its primary annotation summary include: total genes, protein coding genes, tRNA genes, and rRNA genes. Sponsors: The CMR was previously funded by two grants, one from the U.S. Department of Energy (DOE) and one from the National Science Foundation (NSF). It is currently partially funded by a Microbial Sequence Center (MSC) grant from the National Institute of Allergy and Infectious Diseases (NIAID)
Proper citation: Neisseria meningitidis MC58 Genome Page (RRID:SCR_002200) Copy
http://www.ncbi.nlm.nih.gov/HTGS/
Database of high-throughput genome sequences from large-scale genome sequencing centers, including unfinished and finished sequences. It was created to accommodate a growing need to make unfinished genomic sequence data rapidly available to the scientific community in a coordinated effort among the International Nucleotide Sequence databases, DDBJ, EMBL, and GenBank. Sequences are prepared for submission by using NCBI's software tools Sequin or tbl2asn. Each center has an FTP directory into which new or updated sequence files are placed. Sequence data in this division are available for BLAST homology searches against either the htgs database or the month database, which includes all new submissions for the prior month. Unfinished HTG sequences containing contigs greater than 2 kb are assigned an accession number and deposited in the HTG division. A typical HTG record might consist of all the first-pass sequence data generated from a single cosmid, BAC, YAC, or P1 clone, which together make up more than 2 kb and contain one or more gaps. A single accession number is assigned to this collection of sequences, and each record includes a clear indication of the status (phase 1 or 2) plus a prominent warning that the sequence data are unfinished and may contain errors. The accession number does not change as sequence records are updated; only the most recent version of a HTG record remains in GenBank.
Proper citation: High Throughput Genomic Sequences Division (RRID:SCR_002150) Copy
http://bioafrica.mrc.ac.za/index.html
The BioAfrica HIV-1 Proteomics Resource is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. HIV Proteomics Resource contains information about each HIV-1 gene product in regard to expression, post-transcriptional / post-translational modifications, localization, functional activities, and potential interactions with viral and host macromolecules. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites.
Proper citation: BioAfrica HIV Informatics in Africa (RRID:SCR_002295) Copy
Portal for studies of genome structure and genetic variation, gene expression and gene function. Provides services including DNA sequencing of model and non-model genomes using both Next Generation and Sanger sequencing , Gene expression analysis using both microarrays and Next Generation Sequencing, High throughput genotyping of SNP and copy number variants, Data collection and analysis supported in-house high performance computing facilities and expertise, Extensive EST clone collections for a number of animal species, all of commercially available microarray tools from Affymetrix, Illumina, Agilent and Nimblegen, Parentage testing using microsatellites and smaller SNP panels. ARK-Genomics has developed network of researchers whom they support through each stage of their genomics research, from grant application, experimental design and technology selection, performing wet laboratory protocols, through to analysis of data often in conjunction with commercial partners.
Proper citation: ARK-Genomics: Centre for Functional Genomics (RRID:SCR_002214) Copy
Complete siRNA target database, complete Peptide-Antigen target database and a Kinase-Phosphatase database. They have also developed the largest database of illustrated signal transduction pathways, which are interconnected to their extensive protein database and online gene / protein analysis tools. The interactive web-based databases and software help life-scientists understand the complexity of systems biology. Systems biology efforts focus on understanding cellular networks, protein interactions involved in cell signaling, mechanisms of cell survival and apoptosis leading to development or identification of drug candidates against a variety of diseases. In the post-genomic era, one of the major concerns for life-science researchers is the organization of gene / protein data. Protein Lounge has met this concern by organizing all necessary data about genes / proteins into one portal.
Proper citation: Protein Lounge (RRID:SCR_002117) Copy
http://bioinf.uta.fi/base_root/
IDbases are locus-specific databases for immunodeficiency-causing mutations. Our aim is to establish database for every immunodeficiency or provide links to those maintained elsewhere. IDbases contain in addition to gene mutation, also information about clinical presentation. Information has been collected from literature as well as received directly from researchers. It would be most glad if those analyzing mutations would send their information by using the interactive web submission available in each database. A number of articles have been published related to IDbases. IDbases are curated and distributed with proprietary MUTbase software suite.
Proper citation: IDbases (RRID:SCR_002378) Copy
Gene expression database system in compliance with MIAME, which is a standard that the MGED Society has developed for comparing and data produced in microarray experiments at different laboratories worldwide. It serves as a public repository for a wide range of high-throughput experimental data in gene expression research, including microarray-based experiments measuring mRNA, serial analysis of gene expression (SAGE tags), and mass spectrometry proteomic data.
Proper citation: CIBEX: Center for Information Biology gene EXpression database (RRID:SCR_002307) Copy
http://ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019.BGMUT was database that provided publicly accessible platform for DNA sequences and curated set of blood mutation information. Data Archive are available at ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive.
Proper citation: Blood Group Antigen Gene Mutation Database (RRID:SCR_002297) Copy
Maintains and provides archival, retrieval and analytical resources for biological information. Central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: DDBJ Omics Archive and BioProject. DOR is archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides organizational framework to access metadata about research projects and data from projects that are deposited into different databases.
Proper citation: DNA DataBank of Japan (DDBJ) (RRID:SCR_002359) Copy
http://bioweb.ensam.inra.fr/esther
Database and tools for analysis of protein and nucleic acid sequences belonging to superfamily of alpha/beta hydrolases homologous to cholinesterases. Covers multiple species, including human, mouse caenorhabditis and drosophila., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: ESTHER (RRID:SCR_002621) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, Documented on March 24, 2014. A resource for gene expression studies, storing highly curated MIAME-compliant studies (i.e. experiments) employing a variety of technologies such as filter arrays, 2-channel microarrays, Affymetrix chips, SAGE, MPSS and RT-PCR. Data were available for querying and downloading based on the MGED ontology, publications or genes. Both public and private studies (the latter viewable only by users having appropriate logins and permissions) were available from this website. Specific details on protocols, biomaterials, study designs, etc., are collected through a user-friendly suite of web annotation forms. Software has been developed to generate MAGE-ML documents to enable easy export of studies stored in RAD to any other database accepting data in this format. RAD is part of a more general Genomics Unified Schema (http://gusdb.org), which includes a richly annotated gene index (http://allgenes.org), thus providing a platform that integrates genomic and transcriptomic data from multiple organisms. NOTE: Due to changes in technology and funding, the RAD website is no longer available. RAD as a schema is still very much active and incorporated in the GUS (Genomics Unified Schema) database system used by CBIL (EuPathDB, Beta Cell Genomics) and others. The schema for RAD can be viewed along with the other GUS namespaces through our Schema Browser.
Proper citation: RNA Abundance Database (RRID:SCR_002771) Copy
http://learn.genetics.utah.edu/content/addiction/
A physiologic and molecular look at drug addiction involving many factors including: basic neurobiology, a scientific examination of drug action in the brain, the role of genetics in addiction, and ethical considerations. Designed to be used by students, teachers and members of the public, the materials meet selected US education standards for science and health. Drug addiction is a chronic disease characterized by changes in the brain which result in a compulsive desire to use a drug. A combination of many factors including genetics, environment and behavior influence a person's addiction risk, making it an incredibly complicated disease. The new science of addiction considers all of these factors - from biology to family - to unravel the complexities of the addicted brain. * Natural Reward Pathways Exist in the Brain: The reward pathway is responsible for driving our feelings of motivation, reward and behavior. * Drugs Alter the Brain's Reward Pathway: Drugs work over time to change the reward pathway and affect the entire brain, resulting in addiction. * Genetics Is An Important Factor In Addiction: Genetic susceptibility to addiction is the result of the interaction of many genes. * Timing and Circumstances Influence Addiction: If you use drugs when you are an adolescent, you are more likely to develop lifetime addiction. An individual's social environment also influences addiction risk. * Challenges and Issues in Addiction: Addiction impacts society with many ethical, legal and social issues.
Proper citation: New Science of Addiction: Genetics and the Brain (RRID:SCR_002770) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 17,2023. A database of genes and interventions connected with aging phenotypes including those with respect to their effects on life-span or age-related neurological diseases. Information includes: organism, aging phenotype, allele type, strain, gene function, phenotypes, mutant, and homologs. If you know of published data (or your own unpublished data that you'd like to share) not currently in the database, please use the Submit a Gene/Intervention link.
Proper citation: Aging Genes and Interventions Database (RRID:SCR_002701) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 14,2026. Integrated database of genomic, expression and protein data for Drosophila, Anopheles, C. elegans and other organisms. You can run flexible queries, export results and analyze lists of data. FlyMine presents data in categories, with each providing information on a particular type of data (for example Gene Expression or Protein Interactions). Template queries, as well as the QueryBuilder itself, allow you to perform searches that span data from more than one category. Advanced users can use a flexible query interface to construct their own data mining queries across the multiple integrated data sources, to modify existing template queries or to create your own template queries. Access our FlyMine data via our Application Programming Interface (API). We provide client libraries in the following languages: Perl, Python, Ruby and & Java API
Proper citation: FlyMine (RRID:SCR_002694) Copy
Database and central repository for genetic, genomic, molecular and cellular phenotype data and clinical information about people who have participated in pharmacogenomics research studies. The data includes, but is not limited to, clinical and basic pharmacokinetic and pharmacogenomic research in the cardiovascular, pulmonary, cancer, pathways, metabolic and transporter domains. PharmGKB welcomes submissions of primary data from all research into genes and genetic variation and their effects on drug and disease phenotypes. PharmGKB collects, encodes, and disseminates knowledge about the impact of human genetic variations on drug response. They curate primary genotype and phenotype data, annotate gene variants and gene-drug-disease relationships via literature review, and summarize important PGx genes and drug pathways. PharmGKB is part of the NIH Pharmacogenomics Research Network (PGRN), a nationwide collaborative research consortium. Its aim is to aid researchers in understanding how genetic variation among individuals contributes to differences in reactions to drugs. A selected subset of data from PharmGKB is accessible via a SOAP interface. Downloaded data is available for individual research purposes only. Drugs with pharmacogenomic information in the context of FDA-approved drug labels are cataloged and drugs with mounting pharmacogenomic evidence are listed.
Proper citation: PharmGKB (RRID:SCR_002689) Copy
GenMAPP is a free computer application designed to visualize gene expression and other genomic data on maps representing biological pathways and groupings of genes. Integrated with GenMAPP are programs to perform a global analysis of gene expression or genomic data in the context of hundreds of pathway MAPPs and thousands of Gene Ontology Terms (MAPPFinder), import lists of genes/proteins to build new MAPPs (MAPPBuilder), and export archives of MAPPs and expression/genomic data to the web. The main features underlying GenMAPP are: *Draw pathways with easy to use graphics tools *Color genes on MAPP files based on user-imported genomic data *Query data against MAPPs and the GeneOntology Enhanced features include the simultaneous view of multiple color sets, expanded species-specific gene databases and custom database options.
Proper citation: Gene Map Annotator and Pathway Profiler (RRID:SCR_005094) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.