Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 1,737 results
Snippet view Table view Download Top 1000 Results
Click the to add this resource to a Collection
  • RRID:SCR_005711

    This resource has 1+ mentions.

http://llama.mshri.on.ca/

The Roth Laboratory is designing and interpreting large-scale experiments to understand pathway structure and its relationship to phenotype and human disease. Software for research focused on a specific research goal is available. Current experimental interests: * Exploiting parallel sequencing technology to phenotype all pairwise gene deletion combinations in S. cerevisiae, with initial application to genes involved in transcription. * Generation of S. cerevisiae strains carrying dozens of chosen targeted deletions, with initial application to delete all ABC transporters imparting multidrug resistance. * Targeted insertion of gene sets encoding entire human pathways into S. cerevisiae, with initial application to genes involved in drug metabolism. Current computational interests: * Systematic analysis of genetic interaction to reveal redundant systems and order of action in genetic pathways * Integrating large-scale studies - including phenotype, genetic epistasis, protein-protein and transcription-regulatory interactions and sequence patterns - to quantitatively assign function to genes and guide experimentation and disease association studies. * Alternative splicing and its relationship to protein interaction networks.

Proper citation: Roth Laboratory (RRID:SCR_005711) Copy   


  • RRID:SCR_005672

http://sourceforge.net/projects/netclassr/

An R package for network-based feature (gene) selection for biomarkers discovery via integrating biological information. The package adapts the following 5 algorithms for classifying and predicting gene expression data using prior knowledge: # average gene expression of pathway (aep); # pathway activities classification (PAC); # Hub network classification (hubc); # filter via top ranked genes (FrSVM); # network smoothed t-statistic (stSVM).

Proper citation: netClass (RRID:SCR_005672) Copy   


http://dbbb.georgetown.edu/research/bioinformatics/

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016.

Proper citation: GUMC Department of Biostatistics Bioinformatics and Biomathematics - Liu Lab (RRID:SCR_005708) Copy   


  • RRID:SCR_005709

    This resource has 1000+ mentions.

http://genemania.org/

Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMANIA (RRID:SCR_005709) Copy   


  • RRID:SCR_005700

    This resource has 10+ mentions.

http://www.molgen.de

The research of the group concentrates on the molecular biology of Gram-positive bacteria, with Bacillus subtilis and Lactococcus lactis as the main model organisms. A number of important (human) pathogens are also investigated: Bacillus cereus, Streptococcus pneumoniae and Enterococcus faecalis. The nature of the research is both fundamental and application-oriented. Transcript- and protein profiling by high-throughput technologies such as DNA microarrays and proteomics tools are being used. The very large data sets generated are analyzed by employing existing and novel bioinformatics tools. Major lines of research are in the field of functional genomics of these organisms, using systems- and synthetic biology approaches.

Proper citation: MolGen (RRID:SCR_005700) Copy   


  • RRID:SCR_005664

http://ki.se/ki/jsp/polopoly.jsp?d=29354&a=31610&l=en

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 29, 2016. KI Biobank - Gallstone aims at investigating genetics of gallstone disease on Swedish Twins. Types of samples * EDTA whole blood * DNA * Plasma Number of sample donors: 82

Proper citation: KI Biobank (RRID:SCR_005664) Copy   


  • RRID:SCR_005606

http://www.nimh.nih.gov/educational-resources/brain-basics/brain-basics.shtml

Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, and ongoing research that helps us better understand and treat disorders. Mental disorders are common. You may have a friend, colleague, or relative with a mental disorder, or perhaps you have experienced one yourself at some point. Such disorders include depression, anxiety disorders, bipolar disorder, attention deficit hyperactivity disorder (ADHD), and many others. Some people who develop a mental illness may recover completely; others may have repeated episodes of illness with relatively stable periods in between. Still others live with symptoms of mental illness every day. They can be moderate, or serious and cause severe disability. Through research, we know that mental disorders are brain disorders. Evidence shows that they can be related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions of cells in the body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you to some of this science, such as: * How the brain develops * How genes and the environment affect the brain * The basic structure of the brain * How different parts of the brain communicate and work with each other * How changes in the brain can lead to mental disorders, such as depression.

Proper citation: Brain Basics (RRID:SCR_005606) Copy   


  • RRID:SCR_005687

    This resource has 10+ mentions.

http://www.arabidopsis.org/servlets/Search?type=keyword&action=new_search

TAIR Keyword Browser searches and browses for Gene Ontology, TAIR Anatomy, and TAIR Developmental stage terms, and allows you to view term details and relationships among terms. It includes links to genes, publications, microarray experiments and annotations associated with the term or any children terms. Platform: Online tool

Proper citation: TAIR Keyword Browser (RRID:SCR_005687) Copy   


  • RRID:SCR_005720

http://www.gotaxexplorer.de/

GOTaxExplorer presents a new approach to comparative genomics that integrates functional information and families with the taxonomic classification. It integrates UniProt, Gene Ontology, NCBI Taxonomy, Pfam and SMART in one database. GOTaxExplorer provides four different query types: selection of entity sets, comparison of sets of Pfam families, semantic comparison of sets of GO terms, functional comparison of sets of gene products. This permits to select custom sets of GO terms, families or taxonomic groups. For example, it is possible to compare arbitrarily selected organisms or groups of organisms from the taxonomic tree on the basis of the functionality of their genes. Furthermore, it enables to determine the distribution of specific molecular functions or protein families in the taxonomy. The comparison of sets of GO terms allows to assess the semantic similarity of two different GO terms. The functional comparison of gene products makes it possible to identify functionally equivalent and functionally related gene products from two organisms on the basis of GO annotations and a semantic similarity measure for GO. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOTaxExplorer (RRID:SCR_005720) Copy   


  • RRID:SCR_005722

http://vortex.cs.wayne.edu/projects.htm#Onto-Miner

Onto-Miner (OM) provides a single and convenient interface that allows the user to interrogate our databases regarding annotations of known genes. OM will return all known information about a given list of genes. Advantages of OM include the fact it allows queries with multiple genes and allows for scripting. This is unlike GenBank which uses a single gene navigation process. Scripted search of the Onto-Tools database for gene annotations. User account required. Platform: Online tool

Proper citation: Onto-Miner (RRID:SCR_005722) Copy   


  • RRID:SCR_005681

http://mcbc.usm.edu/gofetcher/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. We developed a web application, GOfetcher, with a very comprehensive search facility for the GO project and a variety of output formats for the results. GOfetcher has three different levels for searching the GO: Quick Search, Advanced Search, and Upload Files for searching. The application includes a unique search option which generates gene information given a nucleotide or protein accession number which can then be used in generating gene ontology information. The output data in GOfetcher can be saved into several different formats; including spreadsheet, comma-separated values, and the Extensible Markup Language (XML) format. Platform: Online tool

Proper citation: GOfetcher (RRID:SCR_005681) Copy   


  • RRID:SCR_005682

    This resource has 1+ mentions.

http://llama.mshri.on.ca/gofish/GoFishWelcome.html

Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GoFish (RRID:SCR_005682) Copy   


http://www.hcvdb.org/

The Hepatitis C Virus Database (HCVdb) is a cooperative project of several groups with the mission of providing to the scientific community studying the hepatitis C virus a comprehensive battery of informational and analytical tools. The Viral Bioinformatics Resource Center (VBRC), the Immune Epitope Database and Analysis Resource (IEDB), the Broad Institute Microbial Sequencing Center (MSC), and the Los Alamos HCV Sequence Database (HCV-LANL) are combining forces to acquire and annotate data on Hepatitis C virus, and to develop and utilize new tools to facilitate the study of this group of organisms.

Proper citation: Hepatitis C Virus Database (HCVdb) (RRID:SCR_005718) Copy   


  • RRID:SCR_005810

    This resource has 10+ mentions.

http://brainstars.org

BrainStars (or B*) is a quantitative expression database of the adult mouse brain. The database has genome-wide expression profile at 51 adult mouse CNS regions. For 51 CNS regions, slices (0.5-mm thick) of mouse brain were cut on a Mouse Brain Matrix, frozen, and the specific regions were punched out bilaterally with a microdissecting needle (gauge 0.5 mm) under a stereomicroscope. For each region, we took samples every 4 hours, starting at ZT0 (Zeitgaber time 0; the time of lights on), for 24 hours (6 time-point samples for each region), and we pooled the samples from the different time points. We independently sampled each region twice (n=2). These samples were purified their RNA, and measured with Affymetrix GeneChip Mouse Genome 430 2.0 arrays. Expression values were then summarized with the RMA method. After several analysis with the expression data, the data and analysis results were stored in the BrainStars database. The database has a REST-like Web API interface for accessing from your Web applications. This document shows how to access the database via our Web API.

Proper citation: BrainStars (RRID:SCR_005810) Copy   


  • RRID:SCR_005778

http://www.garban.org/garban/home.php

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 12, 2012. GARBAN is a tool for analysis and rapid functional annotation of data arising from cDNA microarrays and proteomics techniques. GARBAN has been implemented with bioinformatic tools to rapidly compare, classify, and graphically represent multiple sets of data (genes/ESTs, or proteins), with the specific aim of facilitating the identification of molecular markers in pathological and pharmacological studies. GARBAN has links to the major genomic and proteomic databases (Ensembl, GeneBank, UniProt Knowledgebase, InterPro, etc.), and follows the criteria of the Gene Ontology Consortium (GO) for ontological classifications. Source may be shared: e-mail garban (at) ceit.es. Platform: Online tool

Proper citation: GARBAN (RRID:SCR_005778) Copy   


  • RRID:SCR_005774

    This resource has 1+ mentions.

http://corneliu.henegar.info/FunCluster.htm

FunCluster is a genomic data analysis algorithm which performs functional analysis of gene expression data obtained from cDNA microarray experiments. Besides automated functional annotation of gene expression data, FunCluster functional analysis aims to detect co-regulated biological processes through a specially designed clustering procedure involving biological annotations and gene expression data. FunCluster''''s functional analysis relies on Gene Ontology and KEGG annotations and is currently available for three organisms: Homo Sapiens, Mus Musculus and Saccharomyces Cerevisiae. FunCluster is provided as a standalone R package, which can be run on any operating system for which an R environment implementation is available (Windows, Mac OS, various flavors of Linux and Unix). Download it from the FunCluster website, or from the worldwide mirrors of CRAN. FunCluster is provided freely under the GNU General Public License 2.0. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: FunCluster (RRID:SCR_005774) Copy   


http://great.stanford.edu/public/html/splash.php

Data analysis service that predicts functions of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. The utility of GREAT extends to data generated for transcription-associated factors, open chromatin, localized epigenomic markers and similar functional data sets, and comparative genomics sets. Platform: Online tool

Proper citation: GREAT: Genomic Regions Enrichment of Annotations Tool (RRID:SCR_005807) Copy   


  • RRID:SCR_005766

    This resource has 1+ mentions.

http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual#GOHyperGAll

To test a sample population of genes for overrepresentation of GO terms, the R/BioC function GOHyperGAll computes for all GO nodes a hypergeometric distribution test and returns the corresponding p-values. A subsequent filter function performs a GO Slim analysis using default or custom GO Slim categories. Basic knowledge about R and BioConductor is required for using this tool. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GOHyperGAll (RRID:SCR_005766) Copy   


https://gene-atlas.brainminds.jp/

Database of gene expression in the marmoset brain.Comparative anatomy of marmoset and mouse cortex from genomic expression. Atlas comparing brain of neonatal marmoset with mouse using in situ hybridization.

Proper citation: Expression Atlas of the Marmoset (RRID:SCR_005760) Copy   


  • RRID:SCR_005757

    This resource has 100+ mentions.

http://snp-magma.sourceforge.net

Software that utilizes a multiobjective evolutionary algorithm for genetic mapping. It is based on a the ECJ evolutionary software package written by Sean Luke and includes the Strength Pareto Evoluationary Algorithm Version 2 changes for multiobjective analysis. The code runs on any platform with Java Version 2. A genetic mapping project, typically implemented during a search for genes responsible for a disease, requires the acquisition of a set of data from each of a large number of individuals. This data set includes the values of multiple genetic markers. These genetic markers occur at discrete positions along the genome, which is a collection of one or more linear chromosomes. Typing the value of a marker in an individual carries a cost; one seeks to minimize the number of markers typed without excessively jeopardizing the probability of detecting an association between a marker and a disease phenotype. MAGMA is a project which employ''s a multiobjective evolutionary algorithm to solve this problem.

Proper citation: MAGMA (RRID:SCR_005757) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X