Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://202.38.126.151:8080/SDisease/
Curated database of experimentally supported data of RNA Splicing mutation and disease. The RNA Splicing mutations include cis-acting mutations that disrupt splicing and trans-acting mutations that affecting RNA-dependent functions that cause disease. Information such as EntrezGeneID, gene genomic sequence, mutation (nucleotide substitutions, deletions and insertions), mutation location within the gene, organism, detailed description of the splicing mutation and references are also given. Users are able to submit new entries to the database. This database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, they manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference PubMed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. They standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, they give direct links of the entry to the respective position/region in the genome browser.
Proper citation: SpliceDisease (RRID:SCR_006130) Copy
http://www.mousephenotype.org/impress
Contains standardized phenotyping protocols essential for the characterization of mouse phenotypes. IMPReSS holds definitions of the phenotyping Pipelines and mandatory and optional Procedures and Parameters carried out and data collected by international mouse clinics following the protocols defined. This allows data to be comparable and shareable and ontological annotations permit interspecies comparison which may help in the identification of phenotypic mouse-models of human diseases. The IMPC (International Mouse Phenotyping Consortium) core pipeline describes the phenotype pipeline that has been agreed by the research institutions. IMPReSS has a SOAP web service machine interface. The WSDL can be accessed here: http://www.mousephenotype.org/impress/soap/server?wsdl
Proper citation: Impress (RRID:SCR_006160) Copy
Clearinghouse and exchange portal for gene variant (mutation) data produced by diagnostics laboratories, offering users a portal through which to announce, discover and acquire a comprehensive listing of observed neutral and disease-causing gene variants in patients and unaffected individuals. Cafe Variome is not a ''''database'''' for the hosting/display/release of data, but a shop window for finding data. As such, it holds only core info for each record, and uses this merely to enable holistic searching across resources. Diagnostics laboratories routinely assess DNA samples from patients with various inherited disorders, and so produce a great wealth of data on the genetic basis of disease. Unfortunately, those data are not usually shared with others. To address this gross deficiency, a novel system has been developed that aims to facilitate the automated transfer of diagnostic laboratory data to the wider community, via an internet based Cafe for routinely exchanging genetic variation data. The flow of research data concerning the genetic basis of health and disease is critical to understanding and developing treatments for a range of genetic diseases. Overall, the project aims to lower the barriers and provide incentives for a willing community to share data, and thereby facilitate the broader exploitation of diagnostic laboratory data. Cafe Variome aims to address the above data flow problems by: # Minimizing the effort required to publish variant data # Ensuring attribution for data creators working in diagnostic laboratories Key elements of the project strategy are: * Data publication will be automated by endowing standard analysis tools used by laboratories with an online data submission function. Submissions will be received by a central Internet depot, which will serve as a place where published datasets are advertised, and subsequently discovered by diverse 3rd parties. * Each dataset will be unambiguously linked with the data submitter''''s identity, and systems devised to facilitate citation of published variant datasets so they can be cited in the literature. Data creators will thus be credited for their contributions. Data submitters can use Cafe Variome to simply announce or publicize their data to the world. To enable this, only core, non-identifiable data is submitted to the central repository, enabling users to search and discover records of interest in the source repository. The data are not automatically handed on to the user (unless intended by the submitters). Hence, the concept is used to deal with the challenge of maximally sharing data whilst fully respecting ethico-legal considerations.
Proper citation: cafe variome (RRID:SCR_006162) Copy
http://www.brain-map.org/api/index.html
API and demo application for accessing the Allen Brain Atlas Mouse Brain data. Data available via the API includes download high resolution images, expression data from a 3D volume, 3D coordinates of the Allen Reference Atlas, and searching genes with similar gene expression profiles using NeuroBlast. Data made available includes: * High resolution images for gene expression, connectivity, and histology experiments, as well as annotated atlas images * 3-D expression summaries registered to a reference space for the Mouse Brain and Developing Mouse Brain * Primary microarray results for the Human Brain and Non-Human Primate * RNA sequencing results for the Developing Human Brain * MRI and DTI files for Human Brain The API consists of the following resources: * RESTful model access * Image download service * 3-D expression summary download service * Differential expression search services * NeuroBlast correlative searches * Image-to-image synchronization service * Structure graph download service
Proper citation: Allen Brain Atlas API (RRID:SCR_005984) Copy
http://athina.biol.uoa.gr/bioinformatics/GENEVITO/
A JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources) and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI) allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of poor annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. GeneViTo has already been applied to visualize the genomes of two microbial organisms: the bacterion Chlamydia trachomatis and the archaeon Methanococcus jannaschii. The application is compatible with Linux or Windows ME-2000-XP operating systems, provided that the appropriate Java Runtime Environment (Java 1.4.1) is already installed in the system.
Proper citation: GeneVito (RRID:SCR_006211) Copy
Web server to identify statistically enriched pathways, diseases, and GO terms for a set of genes or proteins, using pathway, disease, and GO knowledge from multiple famous databases. It allows for both ID mapping and cross-species sequence similarity mapping. It then performs statistical tests to identify statistically significantly enriched pathways and diseases. KOBAS 2.0 incorporates knowledge across 1327 species from 5 pathway databases (KEGG PATHWAY, PID, BioCyc, Reactome and Panther) and 5 human disease databases (OMIM, KEGG DISEASE, FunDO, GAD and NHGRI GWAS Catalog). A standalone command line version is also available, THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: KOBAS (RRID:SCR_006350) Copy
http://www.informatics.jax.org/mgihome/GO/project.shtml
This resource is part of the Gene Ontology Consortium which seeks to provide controlled vocabularies for the description of the molecular function, biological process, and cellular component of gene products. These terms are to be used as attributes of gene products by collaborating databases, facilitating uniform queries across them. GO team members at MGI participate in ontology development, outreach, and functional curation of mouse gene products. The GO vocabularies have a hierarchical structure that permits a range of detail from high-level, broadly descriptive terms to very low level, highly specific terms. This broad range is useful both in annotating genes and in searching for gene information using these terms as search criteria. GO terms are defined, allowing all databases to use the terms consistently and properly. GO annotations in the databases additionally include the publication reference which allowed the association to be made and an evidence statement citing how the association was determined.
Proper citation: Mouse Genome Informatics: The Gene Ontology Project (RRID:SCR_006447) Copy
Online catalog of human genes and genetic disorders, for clinical features, phenotypes and genes. Collection of human genes and genetic phenotypes, focusing on relationship between phenotype and genotype. Referenced overviews in OMIM contain information on all known mendelian disorders and variety of related genes. It is updated daily, and entries contain copious links to other genetics resources.
Proper citation: OMIM (RRID:SCR_006437) Copy
Tool for extensively testing the discriminatory power of biologically relevant gene sets in microarray data classification. While the user can work with different gene set collections and several microarray data files to configure specific classification experiments, the tool is able to run several tests in parallel. It is able to render valuable information for diagnostic analyses and clinical management decisions based on systematically evaluating custom hypothesis over different data sets using complementary classifiers, a key aspect in clinical research.
Proper citation: GeneCommittee (RRID:SCR_004168) Copy
Consortium that brings together Europe's top industrial and academic experts to develop new tests that will help researchers detect potential liver toxicity issues much earlier in drug development, saving many patients from the trauma of liver failure. The team aims to deepen the understanding of the science behind drug-induced liver injury, and use that knowledge to overcome the many drawbacks of the tests currently used. A major focus will be on a systematic and evidence-based evaluation of both currently available and new laboratory test systems, including cultures of liver cells in one-dimensional and three dimensional configurations. The project will also develop models that take into account the natural differences between patients. This is important because factors such as certain genes, the liver's immune response, and viral infections have all been associated with an increased risk of DILI. The project will seek to address the current lack of human liver cells available to researchers by using induced pluripotent stem cells (iPSCs) generated from patients who are particularly sensitive to DILI. Another strand of the project will develop computer models to unravel the complex, often inter-related mechanisms behind DILI. Finally, the team will assess how accurate the results of laboratory tests are at predicting actual outcomes in patients.
Proper citation: MIP-DILI (RRID:SCR_003870) Copy
http://www.newmeds-europe.com/
Consortium that will develop new models and methods to enable novel treatments for schizophrenia and depression including three important missing tools that will facilitate the translation of scientific findings into benefits for patients. The project will focus on developing new animal models which use brain recording and behavioral tests to identify innovative and effective drugs for schizophrenia. The project will develop standardized paradigms, acquisition and analysis techniques to apply brain imaging, especially fMRI and PET imaging to drug development. It will examine how new genetic findings (duplication and deletion or changes in genes) influence the response to various drugs and whether this information can be used to choose the right drug for the right patient. And finally, it will try and develop new approaches for shorter and more efficient trials of new medication - trials that may require fewer patients and give faster results.
Proper citation: NEWMEDS (RRID:SCR_003872) Copy
Atlas of developing human brain for studying transcriptional mechanisms involved in human brain development. One of the BrainSpan datasets, Exon microarray summarized to genes, is presented. It is a downloadable archive of files containing normalized RNA-Seq expression values for analysis.
Proper citation: BrainSpan (RRID:SCR_004219) Copy
http://bioinfo.au.tsinghua.edu.cn/software/TAGS/
Software tool for gene set enrichment analysis for expression time series, which can incorporate existing knowledge and analyze the dynamic property of a group of genes that have functional or structural associations. The installation file is for Windows., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: TAGS (RRID:SCR_004294) Copy
http://nematode.lab.nig.ac.jp/
Expression pattern map of the 100Mb genome of the nematode Caenorhabditis elegans through EST analysis and systematic whole mount in situ hybridization. NEXTDB is the database to integrate all information from their expression pattern project and to make the data available to the scientific community. Information available in the current version is as follows: * Map: Visual expression of the relationships among the cosmids, predicted genes and the cDNA clones. * Image: In situ hybridization images that are arranged by their developmental stages. * Sequence: Tag sequences of the cDNA clones are available. * Homology: Results of BLASTX search are available. Users of the data presented on our web pages should not publish the information without our permission and appropriate acknowledgment. Methods are available for: * In situ hybridization on whole mount embryos of C.elegans * Protocols for large scale in situ hybridization on C.elegans larvae
Proper citation: NEXTDB (RRID:SCR_004480) Copy
Open source environment for sharing, processing and analyzing stem cell data bringing together stem cell data sets with tools for curation, dissemination and analysis. Standardization of the analytical approaches will enable researchers to directly compare and integrate their results with experiments and disease models in the Commons. Key features of the Stem Cell Commons * Contains stem cell related experiments * Includes microarray and Next-Generation Sequencing (NGS) data from human, mouse, rat and zebrafish * Data from multiple cell types and disease models * Carefully curated experimental metadata using controlled vocabularies * Export in the Investigation-Study-Assay tabular format (ISA-Tab) that is used by over 30 organizations worldwide * A community oriented resource with public data sets and freely available code in public code repositories such as GitHub Currently in development * Development of Refinery, a novel analysis platform that links Commons data to the Galaxy analytical engine * ChIP-seq analysis pipeline (additional pipelines in development) * Integration of experimental metadata and data files with Galaxy to guide users to choose workflows, parameters, and data sources Stem Cell Commons is based on open source software and is available for download and development.
Proper citation: Stem Cell Commons (RRID:SCR_004415) Copy
http://en.wikibooks.org/wiki/Handbook_of_Genetic_Counseling
The Handbook of Genetic Counseling is a wikibook designed as an introduction to the discipline and practice of genetic counseling. The text provides an introduction to genetic counseling as a clinical practice and includes sample counseling outlines and letters for students of genetic counseling. Additional outline and letter examples are highly encouraged. Wikibooks contains books on many medical topics; however, no warranty whatsoever is made that any of the books are accurate.
Proper citation: Handbook of Genetic Counseling (RRID:SCR_004564) Copy
http://www.ncbi.nlm.nih.gov/biosystems/
Database that provides access to biological systems and their component genes, proteins, and small molecules, as well as literature describing those biosystems and other related data throughout Entrez. A biosystem, or biological system, is a group of molecules that interact directly or indirectly, where the grouping is relevant to the characterization of living matter. BioSystem records list and categorize components, such as the genes, proteins, and small molecules involved in a biological system. The companion FLink tool, in turn, allows you to input a list of proteins, genes, or small molecules and retrieve a ranked list of biosystems. A number of databases provide diagrams showing the components and products of biological pathways along with corresponding annotations and links to literature. This database was developed as a complementary project to (1) serve as a centralized repository of data; (2) connect the biosystem records with associated literature, molecular, and chemical data throughout the Entrez system; and (3) facilitate computation on biosystems data. The NCBI BioSystems Database currently contains records from several source databases: KEGG, BioCyc (including its Tier 1 EcoCyc and MetaCyc databases, and its Tier 2 databases), Reactome, the National Cancer Institute's Pathway Interaction Database, WikiPathways, and Gene Ontology (GO). It includes several types of records such as pathways, structural complexes, and functional sets, and is desiged to accomodate other record types, such as diseases, as data become available. Through these collaborations, the BioSystems database facilitates access to, and provides the ability to compute on, a wide range of biosystems data. If you are interested in depositing data into the BioSystems database, please contact them.
Proper citation: NCBI BioSystems Database (RRID:SCR_004690) Copy
A web-based browser for Gene Ontology terms and annotations, which is provided by the UniProtKB-GOA group at the EBI. It is able to offer a range of facilities including bulk downloads of GO annotation data which can be extensively filtered by a range of different parameters and GO slim set generation. The software for QuickGO is freely available under the Apache 2 license. QuickGO can supply GO term information and GO annotation data via REST web services.
Proper citation: QuickGO (RRID:SCR_004608) Copy
A cross-database search service for Drosophila gene expression data, including microarray data from FlyAtlas and in situ images from BDGP and Fly-TED. The applications provide different ways to search for and compare gene expression data for the fruit fly Drosophila melanogaster. You may Search Gene Expression Data by Gene, Gene Batch, and by Tissue Expression Profile. A number of Web services (SPARQL endpoints) are provided from this site which may be queried programmatically for data.
Proper citation: OpenFlyData.org (RRID:SCR_004807) Copy
http://bioinf.uta.fi/base_root/
IDbases are locus-specific databases for immunodeficiency-causing mutations. Our aim is to establish database for every immunodeficiency or provide links to those maintained elsewhere. IDbases contain in addition to gene mutation, also information about clinical presentation. Information has been collected from literature as well as received directly from researchers. It would be most glad if those analyzing mutations would send their information by using the interactive web submission available in each database. A number of articles have been published related to IDbases. IDbases are curated and distributed with proprietary MUTbase software suite.
Proper citation: IDbases (RRID:SCR_002378) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within NIF that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.