Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 28 showing 541 ~ 560 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_005593

    This resource has 10+ mentions.

http://sybil.sourceforge.net/

A web-based software package for comparative genomics.

Proper citation: Sybil (RRID:SCR_005593) Copy   


  • RRID:SCR_015934

    This resource has 1+ mentions.

https://github.com/adigenova/fast-sg

Algorithm for alignment-free scaffolding graph construction from short or long reads. It allows the reuse of efficient algorithms designed for short read data and permits the definition of novel modular hybrid assembly pipelines.

Proper citation: Fast-SG (RRID:SCR_015934) Copy   


  • RRID:SCR_016634

    This resource has 10+ mentions.

https://www.ncbi.nlm.nih.gov/sites/batchentrez

Software program for loading numbers of genome records. Allows the retrieval of a large number of nucleotide sequences or protein sequences, in a batch mode, by importing a file containing a list of the desired GI or accession numbers.

Proper citation: Batch Entrez (RRID:SCR_016634) Copy   


  • RRID:SCR_017014

    This resource has 500+ mentions.

https://github.com/schatzlab/genomescope

Open source software package for fast genome analysis from unassembled short reads. Used to estimate genome heterozygosity, repeat content, and size from sequencing reads using a kmer-based statistical approach.

Proper citation: GenomeScope (RRID:SCR_017014) Copy   


  • RRID:SCR_017011

    This resource has 1+ mentions.

https://omicssimla.sourceforge.io

Software tool for generating multi omics data with disease status. Simulates genomics (SNPs and copy number variations), epigenomics ( whole genome bisulphite sequencing), transcriptomics ( RNA seq), and proteomics (normalized reverse phase protein array) data at the whole genome level. Available as desktop and web application version.

Proper citation: OmicsSIMLA (RRID:SCR_017011) Copy   


  • RRID:SCR_017287

    This resource has 10+ mentions.

https://github.com/brentp/peddy

Software package that evaluates correspondence between stated sexes, relationships, and ancestries in pedigree file and those inferred from genotypes in VCF file resulting from human whole genome sequencing or whole exome sequencing studies. Facilitates both automated and interactive, visual detection of sample swaps, poor sequencing quality, and other indicators of sample problems.

Proper citation: peddy (RRID:SCR_017287) Copy   


  • RRID:SCR_017261

    This resource has 1+ mentions.

https://github.com/Sethupathy-Lab/miRquant

Software tool for accurate annotation and quantification of microRNAs and their isomiRs from small RNA-sequencing data. Provides information on quality of sequencing data, genome mapping statistics, abundance of other types of small RNAs such as tDRs and yDRs, prevalence of post transcriptional modifications.

Proper citation: miRquant (RRID:SCR_017261) Copy   


  • RRID:SCR_016925

    This resource has 10+ mentions.

https://www.4dnucleome.org

Research project to understand the principles underlying nuclear organization in space and time, the role nuclear organization plays in gene expression and cellular function, and how changes in nuclear organization affect normal development and diseases. Portal provides free access to datasets, software packages, and protocols to advance biomedical research of nuclear architecture. Aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes.

Proper citation: 4D Nucleome (RRID:SCR_016925) Copy   


http://hugenavigator.net/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 5, 2023. Knowledge base of genetic associations and human genome epidemiology including information on population prevalence of genetic variants, gene-disease associations, gene-gene and gene- environment interactions, and evaluation of genetic tests. This tool explores HuGENet, the Human Genome Epidemiology Network, which is a global collaboration of individuals and organizations committed to the assessment of the impact of human genome variation on population health and how genetic information can be used to improve health and prevent disease. What does HuGE Navigator offer? *HuGEpedia - an encyclopedia of human genetic variation in health and disease, includes, Phenopedia and Genopedia. Phenopedia allows you to look up gene-disease association summaries by disease, and Genopedia allows you to look up gene-disease association summaries by gene. In general, HuGEpedia is a searchable database that summarizes published articles about human disease and genetic variation, including primary studies, reviews, and meta-analyses. It provides links to Pubmed abstracts, researcher contact info, trends, and more. *HuGEtools - searching and mining the literature in human genome epidemiology, includes, HuGE Literature Finder, HuGE Investigator Browser, Gene Prospector, HuGE Watch, Variant Name Mapper, and HuGE Risk Translator. *HuGE Literature Finder finds published articles in human genome epidemiology since 2001. The search query can include genes, disease, outcome, environmental factors, author, etc. Results can be filtered by these categories. It is also possible to see all articles in the database for a particular topic, such as genotype prevalence, pharmacogenomics, or clinical trial. *HuGE Investigator Browser finds investigators in a particular field of human genome epidemiology. This info is obtained using a behind-the-scenes tool that automatically parses PubMed affiliation data. *Gene Prospector is a gateway for evaluating genes in relation to disease and risk factors. This tool allows you to enter a disease or risk factor and then supplies you with a table of genes associated w/your query that are ranked based on strength of evidence from the literature. This evidence is culled from the HuGE Literature Finder and NCBI Entrez Gene - And you're given the scoring formula. The Gene Prospector results table provides access to the Genopedia entry for each gene in the list, general info including links to other resources, SNP info, and associated literature from HuGE, PubMed, GWAS, and more. It is a great place to locate a lot of info about your disease/gene of interest very quickly. *HuGE Watch tracks the evolution of published literature, HuGE investigators, genes studied, or diseases studied in human genome epidemiology. For example, if you search Trend/Pattern for Diseases Studied you'll initially get a graph and chart of the number of diseases studied per year since 1997. You can refine these results by limiting the temporal trend to a category or study type such as Gene-gene Interaction or HuGE Review. *Variant Name Mapper maps common names and rs numbers of genetic variants using information from SNP500Cancer, SNPedia, pharmGKB, ALFRED, AlzGene, PDGene, SZgene, HuGE Navigator, LSDBs, and user submissions. *HuGE Risk Translator calculates the predictive value of genetic markers for disease risk. To do so, users must enter the frequency of risk variant, the population disease risk, and the odds ratio between the gene and disease. This information is necessary in order to yield a useful predictive result. *HuGEmix - a series of HuGE related informatics utilities and projects, includes, GAPscreener, HuGE Track, Open Source. GAPscreener is a screening tool for published literature on human genetic associations; HuGE Track is a custom track built for HuGE data in the UCSC Genome Browser; and Open Source is infrastructure for managing knowledge and information from PubMed.

Proper citation: HuGE Navigator - Human Genome Epidemiology Navigator (RRID:SCR_003172) Copy   


http://rgd.mcw.edu/rgdCuration/?module=portal&func=show&name=nuro

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 12,2023. Portal that provides researchers with easy access to data on rat genes, QTLs, strain models, biological processes and pathways related to neurological diseases. This resource also includes dynamic data analysis tools.

Proper citation: Rat Genome Database: Neurological Disease Portal (RRID:SCR_008685) Copy   


  • RRID:SCR_008486

    This resource has 1+ mentions.

http://www.broad.mit.edu/mammals/dog

The genome of the domesticated dog, a close evolutionary relation to human, is a powerful new tool for understanding the human genome. Comparison of the dog with human and other mammals reveals key information about the structure and evolution of genes and genomes. The unique breeding history of dogs, with their extraordinary behavioral and physical diversity, offers the opportunity to find important genes underlying diseases shared between dogs and humans, such as cancer, diabetes, and epilepsy. The Canine Genome Sequencing Project produced a high-quality draft sequence of a female boxer named Tasha. By comparing Tasha with many other breeds, the project also compiled a comprehensive set of SNPs (single nucleotide polymorphisms) useful in all dog breeds. These closely spaced genomic landmarks are critical for disease mapping. By comparing the dog, rodent, and human lineages, researchers at the Broad Institute uncovered exciting new information about human genes, their evolution, and the regulatory mechanisms governing their expression. Using SNPs, researchers describe the strikingly different haplotype structure in dog breeds compared with the entire dog population. In addition, they show that by understanding the patterns of variation in dog breeds, scientists can design powerful gene mapping experiments for complex diseases that are difficult to map in human populations. Contribute Although the astounding generosity of Eli and Edythe L. Broad and several other venture philanthropists empowers our scientists to tackle many of the most important problems at the cutting edge of genomic medicine, there are many other critical challenges that they cannot yet pursue because of limited resources. We need additional visionary partners to join the Broads and the Broad Institute in transforming medicine with the power of genomics.

Proper citation: Dog Genome Project (RRID:SCR_008486) Copy   


  • RRID:SCR_002890

    This resource has 1+ mentions.

http://www.hgsc.bcm.tmc.edu/content/honey-bee-genome-project

The HGSC has sequenced the honey bee, Apis mellifera. The version 4.0 assembly was released in March 2006 and published in October 2006. The genome sequence is being upgraded with additional sequence coverage. The honey bee is important in the agricultural community as a producer of honey and as a facilitator of pollination. It is a model organism for studying the following human health issues: immunity, allergic reaction, antibiotic resistance, development, mental health, longevity and diseases of the X chromosome. In addition, biologists are interested in the honey bee's social organization and behavioral traits. This project was proposed to the HGSC by a group of dedicated insect biologists, headed by Gene Robinson. Following a workshop at the HGSC and a honey bee white paper, the HGSC began the project in 2002. A 6-fold coverage WGS, BAC sequence from pooled arrays, and an initial genome assembly (Amel_v1.0) were released beginning in 2003. This has been a challenging project with difficulty in recovering AT-rich regions. The WGS data had lower coverage in AT-rich regions and BAC data from clones showed evidence of internal deletions. Additional reads from AT enriched DNA addressed these underrepresented regions. The current assembly Amel_4.0 was produced with Atlas and includes 2.7 million reads (1.8 Gb) or 7.5x coverage of the (clonable) genome. About 97% of STSs, 98% of ESTs, and 96% of cDNAs are represented in the 231 Mb assembly. About 2,500 reads were also produced from a strain of Africanized honey bee and SNPs were extracted. These were released in dbSNP and the NCBI Trace Archive. Analysis of the genome by a consortium of 20 labs has been completed. This produced a gene list derived from five different methods melded through the GLEAN software. Publications include a main paper in Nature and up to forty companion papers in Genome Research and Insect Molecular Biology. Sponsors: Sequencing of the honey bee is jointly funded by National Human Genome Research Institute (NHGRI) and the Department of Agriculture (USDA). Multiple drones from the same queen (strain DH4) were obtained from Danny Weaver of B. Weaver Apiaries. All libraries were made from DNA isolated from these drones. The honey bee BAC library (CHORI-224) was prepared by Pieter de Jong and Katzutoyo Osoegawa at the Children's Hospital Oakland Research Institute.

Proper citation: Honey Bee Genome Project (RRID:SCR_002890) Copy   


  • RRID:SCR_026370

    This resource has 1+ mentions.

https://github.com/huangnengCSU/compleasm

Software genome completeness evaluation tool based on miniprot.

Proper citation: compleasm (RRID:SCR_026370) Copy   


  • RRID:SCR_000229

    This resource has 10+ mentions.

http://technelysium.com.au/?page_id=27

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 31,2023. Software which is able to assemble data from 454 and Illumina next-generation sequencers, with up to 100,000 sequences if 2 Gb RAM is available.

Proper citation: ChromasPro (RRID:SCR_000229) Copy   


http://wishart.biology.ualberta.ca/BacMap

An interactive visual database containing hundreds of fully labeled, zoomable, and searchable maps of bacterial genomes. It uses a visualization tool (CGView) to generate high-resolution circular genome maps from sequence feature information. Each map includes an interface that allows the image to be expanded and rotated. In the default view, identified genes are drawn to scale and colored according to coding directions. When a region of interest is expanded, gene labels are displayed. Each label is hyperlinked to a custom ''gene card'' which provides several fields of information concerning the corresponding DNA and protein sequences. Each genome map is searchable via a local BLAST search and a gene name/synonym search. A complete listing of the species and strains in the BacMap database is available on the BacMap homepage. Below each species/strain name is a list of the sequenced chromosomes and plasmids that are available. Some features of BacMap include: * Maps are available for 2023 bacterial chromosomes. * Each map supports zooming and rotation. * Map gene labels are hyperlinked to detailed textual annotations. * Maps can be explored manually, or with the help of BacMap''s built in text search and BLAST search. * A written synopsis of each bacterial species is provided. * Several charts illustrating the proteomic and genomic characteristics of each chromosome are available. * Flat file versions of the BacMap gene annotations, gene sequences and protein sequences can be downloaded. BacMap can be used to: * Obtain basic genome statistics. * Visualize the genomic context of genes. * Search for orthologues and paralogues in a genome of interest. * Search for conserved operon structure. * Look for gene content differences between bacterial species. * Obtain pre-calculated annotations for bacterial genes of interest.

Proper citation: BacMap: Bacterial Genome Atlas (RRID:SCR_006988) Copy   


http://www.sugp.caltech.edu/SpBase/

SpBase is designed to present the results of the genome sequencing project for the purple sea urchin. The sequences and annotations emerging from this effort are organized in a database that provides the research community access to those data not normally presented through National Center for Biotechnology Information and other large databases. Additionally, the unique information on that links gene identities and sequences to the plate and well location to the library filters from the Sea Urchin genome Resource will also be presented. The software used to organize and present the sea urchin genome comes from GMOD, a collection of open source software tools for creating and managing genome-scale biological databases. That sea urchins eggs and embryos have long remained a popular research subject for cell and developmental biologists is one rationale for sequencing the genome. In addition, studies of embryonic development in the California Purple Sea Urchin, Strongylocentrotus purpuratus , have paralleled the emergence of molecular techniques ranging from the characterization of genomic repeat sequences in the 1970''s to the elucidation of gene regulatory networks in recent times. The parent of this site, SUGP, was meant to provide a focal point for the exchange of genomic information as the genome of the Purple sea urchin was being sequenced. Over these past years it has served as a repository for small sequencing projects and a source of sequence information useful for gene discovery projects. Here one could find information on macro-array libraries of cDNAs from the purple sea urchin and genomic DNA from several species. In addition, a Sequence Tag Connector (STC) collection has been assembled from 5% of the genome sequence and a very extensive repeat sequence catalog prepared. All of the sequence data that we maintained at SUGP was incorporated into the new SPBase. Of course, it is all in public sequence databases such as the National Center for Biological Information as well. Some additional sequence information is available at the Resource Center of the German Human Genome Project. With the publication of The Genome of the Sea Urchin Strongylocentrotus purpuratus by The Sea Urchin Genome Sequencing Consortium a link to the first 9941 gene annotations are now publicly available. The effort to sequence the whole purple sea urchin genome was a cooperative one that included contributions from the Sea Urchin Genome Facility here at the Center for Computational Regulatory Genomics, Beckman Institute, Caltech, and support from the Human Genome Research Institute of the National Institutes of Health. The sequencing was done at the Baylor College of Medicine, Human Genome Sequencing Center, Houston, Texas. Funding was approved based on an initiative submitted by the Sea Urchin Genome Advisory Committee.

Proper citation: SpBase - Strongylocentrotus purpuratus: the Sea Urchin Genome Database (RRID:SCR_007441) Copy   


  • RRID:SCR_001653

    This resource has 10000+ mentions.

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&BLAST_PROGRAMS=blastx&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome

Web application to search protein databases using a translated nucleotide query. Translated BLAST services are useful when trying to find homologous proteins to a nucleotide coding region. Blastx compares translational products of the nucleotide query sequence to a protein database. Because blastx translates the query sequence in all six reading frames and provides combined significance statistics for hits to different frames, it is particularly useful when the reading frame of the query sequence is unknown or it contains errors that may lead to frame shifts or other coding errors. Thus blastx is often the first analysis performed with a newly determined nucleotide sequence and is used extensively in analyzing EST sequences. This search is more sensitive than nucleotide blast since the comparison is performed at the protein level.

Proper citation: BLASTX (RRID:SCR_001653) Copy   


https://rgd.mcw.edu/rgdweb/portal/home.jsp?p=4

An integrated resource for information on genes, QTLs and strains associated with diabetes. The portal provides easy acces to data related to both Type 1 and Type 2 Diabetes and Diabetes-related Obesity and Hypertension, as well as information on Diabetic Complications. View the results for all the included diabetes-related disease states or choose a disease category to get a pull-down list of diseases. A single click on a disease will provide a list of related genes, QTLs, and strains as well as a genome wide view of these via the GViewer tool. A link from GViewer to GBrowse shows the genes and QTLs within their genomic context. Additional pages for Phenotypes, Pathways and Biological Processes provide one-click access to data related to diabetes. Tools, Related Links and Rat Strain Models pages link to additional resources of interest to diabetes researchers.

Proper citation: Diabetes Disease Portal (RRID:SCR_001660) Copy   


  • RRID:SCR_001730

    This resource has 50+ mentions.

http://alfred.med.yale.edu

A public curated compilation of allele frequency data on anthropologically defined human population samples linked to the molecular genetics-human genome databases. Only data on well defined population samples that are large enough to yield reasonably accurate frequencies and for polymorphisms sufficiently defined to be replicable can be included in ALFRED. Researchers wishing to have their data entered into ALFRED should contact them. Initially, ALFRED contained primarily data generated in the laboratories of K.K. and J.R. Kidd in the Department of Genetics at Yale, including extensive unpublished data. Data from the published literature are being entered into ALFRED in a systematic way, with a focus on polymorphisms studied in many different populations. ALFRED is distinct from such databases as dbSNP, which catalogs sequence variation. ALFRED's focus is on allele frequencies in diverse anthropologically defined populations. It is not a compendium of human DNA polymorphisms but of frequencies of selected polymorphisms with an emphasis on those that have been studied in multiple populations. All of the data in ALFRED are considered to be in the public domain and available for use in research and teaching. ALFRED provides easy searching options including versatile "Keyword search" and also has numerous summary tables providing quick overviews of contents by chromosome, population, average heterozygosity, Fst and others, all available under various tabs from the ALFRED homepage.

Proper citation: ALFRED (RRID:SCR_001730) Copy   


  • RRID:SCR_001849

    This resource has 50+ mentions.

https://www.genome.wisc.edu/tools/asap.htm

Database and web interface developed to store, update and distribute genome sequence data and gene expression data. ASAP was designed to facilitate ongoing community annotation of genomes and to grow with genome projects as they move from the preliminary data stage through post-sequencing functional analysis. The ASAP database includes multiple genome sequences at various stages of analysis, and gene expression data from preliminary experiments. Use of some of this preliminary data is conditional, and it is the users responsibility to read the data release policy and to verify that any use of specific data obtained through ASAP is consistent with this policy. There are four main routes to viewing the information in ASAP: # a summary page, # a form to query the genome annotations, # a form to query strain collections, and # a form to query the experimental data. Navigational buttons appear on every page allowing users to jump to any of these four points., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: ASAP (RRID:SCR_001849) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. Neuroscience Information Framework Resources

    Welcome to the NIF Resources search. From here you can search through a compilation of resources used by NIF and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that NIF has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on NIF then you can log in from here to get additional features in NIF such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into NIF you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within NIF that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X